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Chapter 8

Introduction

The importance of mathematics instruction has been stressed, quite rightly, in 
many official reports in the United Kingdom, the United States, and other 
nations. Napoleon famously said that mathematics is “intimately connected with 
the prosperity of the state”. In his foreword to the Cockcroft report on math 
teaching in 1982, Sir Keith Joseph, Secretary of State for Education and Science, 
wrote “Few subjects are as important to the future of the nation as mathematics” 
(Cockcroft, 1982). Since Cockcroft, in the United Kingdom alone, there has 
been Professor Adrian Smith’s report on post-14 math (Smith, 2004), and Sir 
Peter Williams’ report on primary math (Williams, 2008). Similarly, the US 
National Research Council (National Research Council Committee on Early 
Childhood Mathematics, 2009) noted that “The new demands of international 
competition in the 21st century require a workforce that is competent in and 
comfortable with mathematics;” and to that end “The committee [of experts] 
was charged with examining existing research in order to develop appropriate 
mathematics learning objectives for preschool children; providing evidence-
based insights related to curriculum, instruction, and teacher education for 
achieving these learning objectives” (p. 1). In 2010, the OECD’s report, The High 
Cost of Low Educational Performance, demonstrated that the standard of math 
drives GDP growth: the standard in 1960 was a good predictor of GDP growth 
up to 2000; and the improvement in educational standard from 1975 to 2000 was 
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highly correlated with improvement in GDP growth. In particular, the report 
looked at the potential effects of improving standards in math. So, for example, 
they found that if the UK improved the standard of the 11% of children who 
failed to reach the PISA minimum level (which is not very high) to the minimum 
level, then the effect on GDP growth would be about 0.44%. Not much, you 
might think, but with an average rate of GDP growth of 1.5%, this would be a 
massive and cumulative increase of nearly one-third.

Poor math has consequences for the lives of individuals. A UK survey found 
that learners with poor math are more likely to be unemployed, depressed, and 
in trouble with the law (Parsons & Bynner, 2005). The accountancy firm, KPMG, 
estimated that the cost to the United Kingdom of poor math in terms of lost 
direct and indirect taxes, unemployment benefits, justice costs, and additional 
educational costs was £2.4 billion per year (Gross, Hudson, & Price, 2009).

Can educational neuroscience make a contribution to improving society and 
the lives of individuals by improving math education?

There is now an extensive psychological and neuroscience literature on 
mathematical cognition and its development. This chapter focuses on studies of 
number understanding, as this topic has received the greatest attention in the lit-
erature in terms both of cognition and of its neural basis, and is most relevant to 
the problems of education. As in the other chapters of this book, development is 
considered across four phases: infancy and childhood (ages 0–5), primary and 
middle school (5–12), secondary school and adolescence (12–18), and adulthood.

Neural roadmap

Before beginning, we provide a roadmap of the brain areas of greatest relevance 
to mathematical thinking, and introduce their putative cognitive functions. We 
know about their roles from two main sources. The earliest and still influential 
source is the effect of brain damage: how does damage to area A affect different 
aspects of mathematical processing? Of course, it is vital to compare the effects 
of damage to area A with damage to other areas of the brain. More recently, it has 
been possible to  induce transient neural malfunctions using transcranial 
magnetic stimulation on normal brains. The other source of information is the 
map of brain activity when the healthy brain is carrying out a mathematical task. 
Mapping using functional magnetic resonance imaging (fMRI) gives reasonable 
localization, but not much information about the timecourse of the cognitive 
processes, since it measures changes in blood flow, which responds slowly to the 
activity of the brain cells. By contrast, electroencephalography, which records 
changes in electrical potentials across the scalp, gives good temporal resolution, 
but poor spatial resolution. (See Chapter 2.)



 Mathematical Development 203

Three brain areas in the parietal lobes are particularly important for num-
bers and arithmetic (Dehaene, Piazza, Pinel, & Cohen, 2003). (1) The intra-
parietal sulcus (IPS) is the neural correlate of the magnitude representations 
that number symbols denote. (Since this sulcus is long, the horizontal middle 
section – hIPS – appears most relevant.) Both left and right IPS are active in 
most numerical tasks. (2) The left angular gyrus (AG) is involved in retrieval of 
previously learned number facts (see especially Delazer et al., 2005; Ischebeck 
et al., 2006). When the left AG is damaged, calculation can be severely affected. 
(3) The posterior superior parietal lobule (SPL) is one of the areas involved in 
relating numbers to space, for example, in counting visible objects.

Other brain areas also play important roles in mathematical cognition 
and development. For example, the right fusiform gyrus (rFG) is associated 
with processing the visual form of mathematical symbols (Rykhlevskaia, 
Uddin, Kondos, & Menon, 2009). The right inferior frontal gyrus (rIFG) is 
implicated in spatial working memory, and in phenomena that link numbers 
to space (Rusconi, Bueti, Walsh, & Butterworth, 2011). For more abstract 
mathematical thinking, the  prefrontal cortex is important. When it is dam-
aged, routine or previously learned problems can be solved, but novel prob-
lems cannot (Shallice & Evans, 1978).

These various brain areas and their putative roles in mathematical cognition 
are depicted in Figure 8.1. We refer to this figure later to situate the discussion of 
individual studies.

Theoretical roadmap

As noted earlier, most neuroscience research has focused on numbers and 
arithmetic, which, in terms of the curriculum and everyday life, are the most 
important aspects of mathematics. It is therefore important to be clear about 
what numbers are and what we know about how they are represented and pro-
cessed in the brain.

In our numerate society numbers are used in many different ways. Here our 
focus is on numbers as abstract properties of sets, for example, to characterize 
the number of fingers on a hand, the number of dwarves with Snow White, or 
the number of wishes given by a genie. These are cardinal numbers, sometimes 
called numerosities, and are ordered by magnitude. So five is larger than four, and 
a set of five will include a set of four. Two sets have the same numerosity – are 
exactly equal – when the members of one can be put in one-to-one correspondence 
with members of the other. This means that adding a number to a set or sub-
tracting a member from a set will affect the numerosity of the set. This is the use 
or meaning of number that is relevant to arithmetic. There is some disagreement 



204 Brian Butterworth and Sashank Varma

about how magnitudes are represented in the brain, and how we come to have 
representations of exactly five.

Another familiar use for number is to order things – such as the pages of this 
book. Page 100 does not have a larger magnitude than page 99 (though the set of 
pages to 100 will have a larger magnitude than the set to 99, of course). Logicians 
and mathematicians call these ordinal numbers, or ranks, and they are some-
times, but not always, referred to by separate vocabulary items: first, second, third, 
1st, 2nd, 3rd – though usually the same words and symbols are used for ordinals 
and numerosities, as in page or house numbers. There is now some evidence that 
the neural representation of ordinals is distinct from that of cardinals (Delazer & 
Butterworth, 1997).
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Figure 8.1 Causal model of possible inter-relations between biological, cognitive, and 
simple behavioral levels. Here, the only environmental factors we address are educational. 
If parietal areas, especially the IPS, fail to develop normally, there will be an impairment 
at the cognitive level in numerosity representation and consequential impairments for 
other  relevant cognitive systems revealed in behavioral abnormalities. The link between 
the occipitotemporal and parietal cortex is required for mapping number symbols (digits 
and number words) to numerosity representations. The prefrontal cortex supports 
learning new facts and procedures. The multiple levels of the theory suggest the instruc-
tional interventions on which educational  scientists should focus. (From Butterworth, 
Varma, and Laurillard (2011) with permission.)
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Still another use of numbers is as labels. For example, in bus numbers, tele-
phone numbers, bar codes, TV channels, neither the magnitude of the number 
nor its order in a sequence is relevant. Thus it makes no sense to say that John’s 
telephone number is larger than Jim’s, or that it comes after Jim’s.

One of the problems for the learner is to distinguish these uses of number, and 
ensure that there is the correct mapping between the number symbol – the word or 
the digit – and its appropriate referent. This is particularly important since under-
standing the symbol systems is a key to talking and learning about numbers and 
arithmetic both in school and out of it. Manipulation of symbols is also a mentally 
efficient way of manipulating and storing arithmetical concepts. As the philoso-
pher A. N. Whitehead observed, an understanding of symbolic notation relieves 
“the brain of all unnecessary work … and sets it free to concentrate on more 
advanced problems” (Whitehead, 1948).

Two important effects

When people are working with symbolic numbers, it is often important to know 
how they are interpreting them. In particular, when they are engaged in a stan-
dard arithmetical task, are representations of numerical magnitude elicited? 
Two effects are standardly used to test for this.

The first is the distance effect – the seminal finding that, when comparing two 
 numbers (i.e., judging which one is greater or lesser), the larger the difference 
in magnitude, the shorter the response time (Moyer & Landauer, 1967), sug-
gesting that magnitude  representations are being compared. The distance effect 
observed when comparing two symbolic numbers will be referred to as the 
symbolic distance effect, and the one observed when comparing the numerosi-
ties of two sets of objects will be referred to as the  nonsymbolic distance effect 
(Buckley & Gillman, 1974). It is important to distinguish these two tasks because 
it is always possible that a learner may be able to do one normally, but not the 
other. For example, if the learner can do the nonsymbolic task in the normal 
way, where magnitudes are directly represented in the stimulus, but not the 
symbolic task, this could imply a problem in linking the symbol to its magni-
tude representation.

The other diagnostic effect is the problem size effect, or really just the size 
effect. Responses are slower and less accurate when the numbers are larger. This 
is so reliable, that one famous paper by Zbrodoff and Logan (2005) is titled 
“What everyone finds: The problem size effect.” It may seem surprising that the 
time it takes to solve even single-digit additions or multiplication table facts 
depends on the size of the numbers, thus it takes longer to solve 9 + 8 and 9 × 8 
than 6 + 7 and 6 × 7, even though these facts are highly overlearned for 
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most numerate adults. Now, if a learner does not show this effect, it could also be 
diagnostic of an important individual difference. For example, the learner may 
be able to recall a fact through rote learning but not really understand it because 
he or she is not evoking the number magnitudes.

Box 8.1 Approximate numerosities.

It has been suggested that arithmetical abilities are built on an inherited 
system for representing numerosities in an approximate way. So instead of 
representing fiveness exactly, it is represented approximately, and mapped 
onto an analog magnitude representation, usually with compression. This 
is represented pictorially here, where the horizontal scale is an arbitrary 
linear scale, and the vertical scale represents idealized activation, with the 
peak of activation representing the most probable response. In this model, 
the representation of each number overlaps with other numbers.
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Several studies have found a correlation between arithmetical abilities 
and measures of the ability to discriminate numerosities greater than 
about six (Halberda, Mazzocco, & Feigenson, 2008; Piazza et al., 2010), 
though some have failed to find this (Iuculano, Tang, Hall, & Butterworth, 
2008). Notice that the representation for each numerosity overlaps with 
that of its neighbors. This means that the basic numerical and arithmet-
ical operations cannot be carried out on these representations. For 
example, the numerical equivalence between two representations cannot 
be established, whereas between sets it can be established by showing 
one-to-one correspondence between members of each set. Transformations 
that affect numerosity, such as adding or subtracting an element, cannot 
be determined with these analog representations. Children as young as 
three, who cannot yet count, notice which transformations affect numer-
osity (Sarnecka & Gelman, 2004). It has been argued by Butterworth 
(2010) that these representations cannot be foundational for arithmetic: 
representations of sets are necessary.
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Mathematical Development

The neural background to all cognitive development is the way the brain changes 
from conception to old age. Chapter 2 reviewed some of the evidence relevant to 
the development of mathematics. First, the brain at birth is not the same as the 
brain later in life. The infant brain has more brain cells (neurons) and more con-
nections (synapses) than the adult brain, and this means that it is more “plastic,” 
that is, more responsive to experience, including formal and informal instruction, 
than later on. As a consequence, learning new material appears to be easier ear-
lier than later. Nevertheless, the newborn brain is not a blank slate. It comes 
equipped with structures and biases that support learning, especially learning 
concepts that evolution has found important. Numerosities are among these 
concepts.

Infancy and childhood (0–5)

The inherited capacity to represent and discriminate stimuli on the basis of their 
numerosity has been observed in infants. This has required developmental 
 psychologists to construct tasks that do not require verbal responses, since one 
cannot ask infants how many objects they are looking at. Many studies have used 
a dishabituation paradigm, which capitalizes on the fact that young infants will 
look longer at a stimulus if it differs from prior stimuli in a meaningful way. The 
first study to show this using a dishabituation paradigm established that at 
5 months old babies are sensitive to changes in small numerosities in visual dis-
plays of two to six objects (Starkey & Cooper, 1980); subsequent research showed 
that this sensitivity was present even in the first week of life (Antell & Keating, 
1983). Six-month-olds dishabituate to displays of 8 versus 16 objects (a 2.0 ratio) 
but not 8 versus 12 objects (a l.5 ratio) (Xu & Spelke, 2000).

A similar paradigm has been used to establish the neural response to changes 
in numerosity using event-related potentials (electroencephalography) from 
 three-month-old infants while they were presented with a continuous stream of 
images, each showing a set of identical objects (Izard, Dehaene-Lambertz, & 
Dehaene, 2008). These were the habituation images. Within a given run, most 
sets had the same numerosity (“standard number”) and the same object, but 
occasionally test images that could differ from the habituation images in number 
and/or object identity. It was thus possible to compare the visual event-related 
potentials evoked by unforeseen changes (dishabituation) either in the numer-
osity of a set (“deviant number”) or the identity of objects forming the set. Three 
numerosity contrasts were investigated: two versus three, four versus eight, and 
four versus 12.
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They found that all these numerosity contrasts produced a dishabituation effect 
– a difference in the pattern of evoked potentials; and the effect for changes in 
numerosity was different from the effect of change in the object. So it was not just 
change that the infant brain was responding to: there was a specific effect for change 
in numerosity. In particular, there was a significant response in the right parietal 
lobe, an area that is involved in numerosity processing in adults (see, e.g., Castelli, 
Glaser, & Butterworth, 2006; Piazza, Mechelli, Price, & Butterworth, 2006; Vetter, 
Butterworth, & Bahrami, 2011). Thus, not only is the cognitive capacity to dis-
criminate numerosities present in infants, the neural mechanism that grows into 
adult competence is already in place.

Further evidence for this comes from a study of four-year-olds using a very sim-
ilar habituation paradigm, but with the neural response measured by fMRI, which 
can give a more precise localization (Cantlon, Brannon, Carter, & Pelphrey, 2006). 
(This method is sometimes called “fMRI adaptation;” see Chapter 2). This study 
had four-year-old children watch sequences of visual stimuli. There were sequences 
where the same object (e.g., a circle) appeared in the same numerosity (e.g., 16 
items), followed by a display with either a different object (e.g., a square) or a differ-
ent numerosity (e.g., 32 items). The question was which brain areas would show a 
response, or neurally dishabituate, to numerical deviants versus object deviants. 
Children showed increasing activation to numerical deviants in right IPS, the same 
area that Izard et al. found in three-month-olds. The adults in this study showed 
increased activation in the same area, but also in the left IPS, suggesting that by 
adulthood these very simple numerosity representations have been connected with 
left-hemisphere functions, including language.

Primary and middle childhood (5–12)

The distance effect has been used to investigate the natural number representa-
tions of primary and middle school children when comparing sets of objects and 
digits. For example, in comparing sets of objects, six-, seven-, and eight-year old 
children show a nonsymbolic distance effect (Ansari & Dhital, 2006). Landerl 
and Kölle (2009) similarly found a nonsymbolic distance effect in eight-, nine-, 
and 10-year old children. Developmentally, people become more accurate at 
comparing numerosities as they get older (Piazza et al., 2010).

Beginning in primary school, it becomes possible to investigate children’s under-
standing of the digits. Sekuler and Mierkiewicz (1977) had kindergarteners, first 
graders, fourth graders, seventh graders, and adults compare pairs of numbers. 
They found a symbolic distance effect at all ages. This finding has been replicated 
and extended with six-, seven-, and eight-year-old children (Holloway & Ansari, 
2009) and with eight-, nine-, and 10-year old children (Landerl & Kölle, 2009).
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Ansari and Dhital (2006) investigated the neural correlates of numerosity in 
10-year-old children and adults. The children displayed a neural distance effect 
– greater activation for near-distance comparisons than far-distance compari-
sons – in left IPS. The adults also displayed a neural distance effect in left IPS, as 
well as one in right IPS. These results are further evidence of comparable mag-
nitude representations in young children and adults, with similar neural bases 
(Cantlon et al., 2006). The neural correlates of the symbolic distance effect have 
been investigated in 10-year-old children (Ansari, Garcia, Lucas, Hamon, & 
Dhital, 2005). The adults in this study displayed a neural distance effect in 
bilateral IPS, a finding that has been replicated in numerous studies. By contrast, 
the children displayed neural distance effects in a network of right prefrontal 
areas, including right IFG.

Taken together, these results demonstrate both continuities and discontinu-
ities in the development of number. Young infants and primary- and middle-
school  children show nonsymbolic distance effects that are comparable to those 
of adults, both behaviorally and neurally, suggesting a common representation 
of numerosity in IPS. The story for the symbolic distance effect is different: 
while both adults and children show this effect behaviorally, the neural corre-
lates are different, with adults showing modulated activation in both the left 
and  right  IPS but 10-year-old children showing it in prefrontal cortex. Thus, 
the   neuroscience data reveal a developmental discontinuity in how number 
symbols are processed.

This is educationally important, since it has been shown that distance effects, 
both nonsymbolic (Halberda et al., 2008) and symbolic (Holloway & Ansari, 
2009) are correlated with arithmetical performance.

Lifelong learning (adulthood)

Nonsymbolic distance effects are regularly found in adults (Buckley & Gillman, 
1974). There is also a symbolic distance effect (Buckley & Gillman, 1974; Moyer 
& Landauer, 1967). The assumption has been that both effects reflect a common 
magnitude representation. This assumption has been corroborated by recent 
studies investigating the neural correlates of these effects. In general, close 
numbers evoke more activation than distant numbers in the bilateral IPS, 
whether comparing numerosities (Ansari & Dhital, 2006; Castelli et al., 2006) 
or number symbols (see, e.g., Fias, Lammertyn, Reynvoet, Dupont, & Orban, 
2003; Pinel, Dehaene, Rivière, & Le Bihan, 2001).

There is also an interesting developmental shift from primary and middle 
school to adulthood in understanding natural number symbols. In children, the 
neural correlate of the symbolic distance effect is right prefrontal cortex (Ansari 
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et al., 2005), which is associated with executive function and controlled  cognition 
more generally (Shallice & Evans, 1978). For them, mapping number symbols to 
magnitude referents is an effortful process. By contrast, the neural correlates for 
adults include bilateral IPS, indicating a more integrated neural representation 
of number symbols and their magnitude referents.

A strikingly similar anterior-to-posterior shift in the brain is observed in 
arithmetic development. Rivera, Reiss, Eckert, and Menon (2005) had children 
aged 8–19 solve addition and subtraction problems. Behaviorally, accuracy rates 
were high across the age range (greater than 85%), indicating that all of the 
 children were arithmetically competent. Response times decreased linearly with 
age, from over 2000 ms in the younger children to close to 1000 ms in the older 
children. It is interesting to consider the neural implications of this behavioral 
speedup, which has been found in other studies (e.g., Koshmider & Ashcraft, 
1991). One possibility is that children across the age range activate the same 
 cortical network, i.e., use similar processing, but that younger children are less 
efficient than older children. In fact, the fMRI data revealed a very different 
 picture. Younger children activated a network of frontal areas associated with 
executive function, including bilateral middle frontal gyrus (MFG) and left ante-
rior cingulate cortex (ACC). They also activated frontal and temporal areas 
associated with controlled retrieval from declarative memory, including left IFG 
and medial temporal lobe/hippocampus. In other words, younger children 
activated a cortical network associated with effortful or strategic processing to 
solve arithmetic problems. Over development, activation in this strategic net-
work decreased and activation in a more posterior and more domain-specific 
network increased. This included left FG, which is associated with visual symbol 
processing; left supramarginal gyrus (SMG), an area adjacent to AG, which is 
also associated with retrieval of verbally coded information; and IPS, which is 
associated with magnitude processing. Thus, over development, children transi-
tioned from strategic processing to a mixture of symbol processing, automatic 
(verbal) memory retrieval, and magnitude processing. This qualitative shift, 
which was opaque given the behavioral data alone, highlights how neuroscience 
data can provide unique insights into mathematical development.

Embodied Understanding of Numbers and Arithmetic

In what sense are numbers and arithmetic meaningful? A conventional answer 
in logic and the philosophy of mathematics is that mathematical symbols and 
expressions denote sets of objects, and are essentially abstract even when the 
objects  themselves are concrete. An emerging alternative in mathematical cog-
nition is that mathematical symbols and expressions gain meaning through their 
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grounding in the perceptual and motor systems of the body (Lakoff & Núñez, 
2000). This view is consistent with the emphasis that mathematics education 
places on manipulatives such as Cuisenaire rods for building mathematical 
understanding (Montessori, 1966). It is for this reason that many curricula have 
children first use manipulatives to help them construct an informal semantics 
for new mathematical concepts before introducing them to the relevant symbolic 
formalism.

Although we have emphasized the abstract nature of number – numerosity is a 
property of a set – humans also think about number in a more embodied way. 
Many cultures have ways of representing numerosities and counting practices in 
terms of body parts. We count and show numbers on our fingers because fingers 
are handy sets to manipulate. These days we use our fingers for numbers up to 10, 
and you would be forgiven for thinking that we simply hold up as many fingers as 
the numerosity we wish to convey. However, it is more complicated than that. 
First, even in presenting numbers to 10, there are cultural conventions. For 
example, in Northern Europe 1 is presented as the index finger, but in Southern 
Europe it presented as the thumb, and in Japan as bending the little finger. Even in 
Europe there existed a traditional method for presenting numbers up to 10 000 on 
the fingers, which seems to have died out. Illiterate cultures without specialized 
number words use other body parts in addition to fingers to represent numbers 
higher than 10. The Yupno of Papua New Guinea count up to 33 using their toes, 
eyes, ears, nose, nostrils, nipples, belly-button, testicles, and penis (see Butterworth, 
1999, Chapter 5, for more details of these practices).

We also think of numbers in a spatial way. This is partly because we see num-
bers spatially arrayed in everyday life: on clock faces, written out horizontally, 
and so on. In school, the digits 1 to 10 are almost always written from left to 
right, and number lines used in teaching similarly put small numbers on the left 
and large numbers on the right. There is even an unconscious association bet-
ween small numbers and the left of space, and large numbers and the right side. 
This was first demonstrated by Dehaene and colleagues. They asked subjects to 
judge whether a number between 1 and 9 was odd or even, and press a left-hand 
button for odd, and a right-hand button for even (and vice versa, of course). 
They found that the response was faster with the left hand for small numbers, 
and with the right hand for large numbers. They memorably called this the 
“spatial–numerical association of response codes”, or SNARC effect (Dehaene, 
Bossini, & Giraux, 1993). This effect has been replicated many times. Indeed, the 
neural basis for the SNARC effect involves the same areas as number processing 
in the parietal cortex, which is also involved in spatial cognition, suggesting an 
intrinsic relationship between number and space (Hubbard, Piazza, Pinel, & 
Dehaene, 2005; Rusconi, Turatto, & Umiltà, 2007). However, there is  evidence to 
suggest that the mental relationship between numbers and space depends on 
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experience and on task. So, for example, in Dehaene’s original study, a group of 
Iranians who write from right to left showed the reverse relationship – a left-hand 
advantage for large numbers and right-hand advantage for small numbers. Also, 
if subjects are asked to study a clock face, where the larger numbers are on the 
left, before the task, this also reverses the SNARC effect (Bächtold, Baumüller, & 
Brugger, 1998). The SNARC effect seems to depend on the task requiring a lat-
eralized motor response – such as left and right hands.

The close connection between mathematical thinking on one hand and visuo-
motor processing on the other – and the neural bases of this connection – have 
been known to neuropsychologists for years. The Gerstmann syndrome is a 
combination of four impairments, two involving symbol systems (dyscalculia 
and dysgraphia) and two involving the visuomotor system (left–right disorienta-
tion and finger agnosia). It is associated with lesions to left AG. Gerstmann him-
self thought that the key to the syndrome was an impaired “body schema,” that 
showed up in the left–right disorientation, and particularly in finger agnosia. 
Rusconi, Walsh, and Butterworth (2005) demonstrated that applying rTMS over 
left AG disrupts performance on both a number task and a finger gnosia task. 
Nevertheless, the functional relationship  between the neural representation of 
fingers and calculation has been questioned. Since both involve the left AG, it 
could be simply that damage that affects the neural representation of fingers, 
especially hand shapes that could be used to present numbers, is likely to also 
affect a functionally independent but anatomically neighboring calculation 
system (Rusconi, Pinel, Dehaene, & Kleinschmidt, 2010).

Nevertheless, there is emerging evidence of an association between visuospa-
tial and motor skills on one hand and mathematical achievement on the other. 
Fayol, Barrouillet, and Marinthe (1998) found that individual differences in 
motor ability predict individual differences in mathematical achievement. Using 
a longitudinal design, measures of finger agnosia, similar to those used with 
neurological patients, were collected in children at age 5. These included a task 
in which the children’s eyes were closed, and the experimenter touched one 
finger twice or two fingers. The child, with eyes open, then had to point to the 
fingers touched. Measures of general intellectual development and mathematical 
achievement (number and arithmetic concepts) were collected at ages 5 and 6. 
Finger gnosia measures were a significant predictor of mathematical achieve-
ment, even after the effects of general intellectual development and age were 
partialed out.

Another study was able to refine these results. Noël (2005) tested five-year-
olds for finger gnosia and left–right disorientation. Fifteen months later, 
numerical and reading abilities were assessed. She found that performance in 
both the finger gnosia and the left–right test were good predictors of numerical 
skills one year later, but not good predictors of reading skills, which proves their 
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specificity to mathematics. However, because the left–right test was also a pre-
dictor, Noël suspected that these tests are just picking up the development of the 
parietal cortex, not the functional role of fingers.

She further explored this in a training study. If finger representations do aid 
the development of number concepts and arithmetic, training on finger tasks 
should improve the acquisition of arithmetical skills in young children. Bafalluy 
and Noël (2008) trained children in Grade 1 who were found to have poor finger 
gnosia on finger representation; this improved both their finger gnosia to better-
than-average levels, and also their arithmetical performance. “These results 
indicate that improving finger gnosia in young children is possible and that it 
can provide a useful support to learning mathematics” (Bafalluy & Noël, 2008).

Bodily activities play other roles in developing arithmetic. In particular, fin-
gers are widely used by young children in the early stages acquiring addition 
skills. For example, Geary, Hoard, Byrd-Craven, and DeSoto (2004) found that 
American  kindergarteners used fingers on 29% of addition trials where the sum 
was less than 11, and 76% of trials where it was more than 10. In first and second 
grade, they were still using fingers on 35% of trials. By contrast, Chinese chil-
dren of the same age did not use fingers at all (Geary, Bow-Thomas, Liu, & 
Siegler, 1996). Geary et al. note that “The use of fingers during counting appears 
to be a working memory aid that allows the child to keep track of the addends 
physically, rather than mentally, during the process of counting.”

In a study on preschoolers, pointing at objects to be counted helps coordinate 
counting words and objects to be counted, and helps segregate items counted 
from those to be counted (Alibali & DiRusso, 1999).

Individual Differences in Mathematical Achievement

Why are some people better at mathematics than others? The question of 
individual differences is critical for mathematics education. There are of course 
many causes that could affect all school subjects, such as general intellectual 
ability, working-memory capacity, socioeconomic status, educational experi-
ences, missing school, conduct difficulties, self-esteem, and so on. Here we focus 
on differences that are specific to learning mathematics.

For example, consider the distance effect, defined as the difference in response 
times between slower near-distance comparisons (e.g., 8 versus 9) and faster 
 far-distance comparisons (e.g., 1 versus 9). This effect has been replicated hun-
dreds of times in the literature. However, not every individual shows a distance 
effect; an average, after all, is typically made up of rather unaverage people. Most 
people exhibit a distance effect – but some show no effect of distance, and a 
few even show an inverse distance effect, i.e., are faster for near-distance versus 
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far-distance comparisons! Individual differences such as these are proving to be 
more than statistical noise. Even typically developing people differ quantitatively 
in their distance effects, and potentially in their neural representations of 
mathematical concepts. This raises the question of whether individual differ-
ences in mathematical cognition are associated with individual differences in 
mathematical achievement. This question has been addressed in a number of 
important studies that span the developmental range.

Primary and middle childhood (5–12)

Holloway and Ansari (2009) used a cross-sectional design to investigate whether 
individual differences in number representation are associated with individual 
differences in mathematical achievement. They measured the symbolic and 
nonsymbolic distance effects in six-, seven-, and eight-year-old children, as well 
as their mathematical achievement test scores. The size of a child’s symbolic dis-
tance effect predicted his or her arithmetic fluency (i.e., solving one-digit 
arithmetic problems in a timed manner), even after controlling for age, raw 
processing speed, and other general variables. By contrast, the size of the non-
symbolic distance effect did not predict arithmetic fluency. These findings sug-
gest that the fidelity of the mapping between number symbols and magnitude 
representations – but not necessarily the fidelity of the magnitude representa-
tions themselves – is related to mathematics achievement.

De Smedt, Verschaffel, and Ghesquière (2009) used a longitudinal design to 
sharpen these cross-sectional findings. They measured the symbolic distance 
effect of children in first grade, and their mathematical achievement in second 
grade. The size of a child’s symbolic distance effect in first grade predicted 
mathematical achievement in second grade, even after controlling for fluid intel-
ligence, processing speed, and age. The longitudinal nature of this design is 
stronger evidence that a connection between number symbols and magnitude 
representations is important for mathematical achievement.

Secondary school and adolescence (12–18)

We are aware of only one study of students in secondary school investigating 
whether individual differences in mathematical cognition are associated 
with  individual differences in mathematical achievement. Halberda et al. 
(2008) had 14-year-olds perform a nonsymbolic comparison task. They found 
that  individual differences in the size of the nonsymbolic distance effect were 
 retroactively associated with individual differences in mathematical  achievement 
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in kindergarten through third grade. This association was probably not due to 
maturational factors: the correlation remained significant even after general 
intelligence, working memory, visuospatial ability, and other general ability 
measures in third grade were partialed out. This finding that the fidelity of one’s 
magnitude representations may be important for mathematical achievement is 
inconsistent with the Holloway and Ansari (2009) findings, demonstrating the 
need for further research.

Lifelong learning (adulthood)

Grabner et al. (2007) investigated the neural correlates of individual differences 
among adults, focusing on arithmetic ability. They included two groups of par-
ticipants, one low in mathematical competence and one high, who were other-
wise comparable in age and general intelligence. Multiplication fluency was 
measured by having participants solve one-digit problems, and multiplication 
calculation was measured by having them solve multidigit problems. At the 
group level, high- competence participants showed greater activation in left AG 
than low-competence participants. Critically, this was also true at the individual 
level: mathematical  competence was positively correlated with left AG activation, 
even after overall processing speed was partialed out. Recall that left AG has 
been implicated in the retrieval of arithmetic facts. Thus, this study suggests that 
one source of individual differences in mathematical competence is the ability to 
use relatively fast and effortless memory retrieval when solving arithmetic prob-
lems, as opposed to relatively slow and effortful strategic processing.

Dyscalculia

Developmental dyscalculia is usually and rather broadly defined as a low 
mathematical achievement in the presence of otherwise normal intelligence and 
access to educational resources. Current prevalence estimates are between 3% 
and 6% (Reigosa-Crespo et al., 2011; Shalev, 2007), which is roughly one child in 
every classroom.

Dyscalculia has been neglected both in research support compared with other 
neurodevelopmental disorders (Bishop, 2010) and in public recognition, even 
though its impact on life chances can be at least as damaging as, for example, 
dyslexia (Parsons & Bynner, 2005). Recent research has revealed that dyscalculia 
is a congenital condition, often inherited, that can persist into adulthood. It can 
occur in the presence of normal or superior intelligence and working memory 
(Landerl, Bevan, & Butterworth, 2004); see Butterworth et al. (2011) for a review. 
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Thus, it appears to be a deficit specific to learning mathematics, or more partic-
ularly to learning arithmetic.

Dyscalculia as a core deficit in processing numerosities

We have argued that dyscalculia is due to a core deficit in representing and processing 
numerosities (Butterworth, 2005, 2010; Butterworth et al., 2011). People with 
dyscalculia lack an intuitive sense of the numerosities of sets. This impairs their 
understanding of the number symbols defined in reference to these numerosities, 
and ultimately their understanding of arithmetic operations defined over number 
symbols. The result is low arithmetical achievement beginning in elementary 
school. This impairment has far-reaching effects, as number and arithmetic are 
 foundational for higher-level mathematics, from algebra to calculus and beyond.

It is important from both a practical and a theoretical perspective to distin-
guish learners who are bad at math from those who are dyscalculic. As noted 
above, there are many reasons for poor math, including lack of access to 
appropriate education. Thus, to be dyscalculic means not just poor at math 
compared with peers, but to have the core deficit as well. To assess for dyscal-
culia therefore requires tests of very simple numerosity processing, that 
depend only minimally on access to appropriate education. For example, 
Butterworth (2010) and Butterworth et al. (2011) have argued for tests of enu-
merating small sets and for comparing small numbers.

This distinction is important because different studies of dyscalculia have 
adopted different inclusion criteria, and this has led to conflicting results. Some 
studies have adopted overly broad criteria, with dyscalculic groups likely included 
both real dyscalculics and those who were simply bad at mathematics. For example, 
Rousselle and Noël (2007) defined their dyscalculic group as children scoring 
below the 15th percentile on a standardized test of mathematical achievement.

Dyscalculia in primary and middle childhood (5–12)

The core-deficit hypothesis is consistent with the finding reviewed above that 
individual differences in elementary-school mathematical achievement are retro-
actively predicted by the size of the nonsymbolic distance effect in adolescence 
(Halberda et al., 2008; Piazza et al., 2010). Several studies have shown that simple 
numerosity, such as naming the number of objects in a set or comparing the numer-
osity of two sets, is defective in dyscalculia (see Butterworth, 2010, for a review).

Another possibility is that dyscalculia is a deficit in mapping number symbols 
onto intact representations of numerical magnitude. This mapping hypothesis is 
consistent with the findings reviewed above that mathematical achievement in 
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elementary school is predicted by the size of the symbolic distance effect 
(Holloway & Ansari, 2009; De Smedt et al., 2009). Thus, the predictive value of 
the nonsymbolic versus symbolic distance effect is important for distinguishing 
between the numerosity and mapping types of deficit. The mapping hypothesis 
was supported by early studies in the literature, which we review first. However, 
later studies, which have adopted better inclusion criteria, find evidence for poor 
discrete magnitude representations – and thus the numerosity hypothesis – at 
both the behavioral and brain levels.

Rousselle and Noël (2007) compared a group of typically developing second 
graders and a group with dyscalculia. The dyscalculic group was slower than 
the control group for symbolic comparison after controlling for age and overall 
processing speed. By contrast, the two groups were comparable for nonsym-
bolic comparison. This study supports the hypothesis of a mapping deficit. 
However, because a rather liberal inclusion criterion for the dyscalculia group 
was used – mathematical achievement 1.5 standard deviations below the mean – 
it is possible that these results were driven by typically developing children at 
the low end of the normal curve rather than by true dyscalculics. More gener-
ally, studies that use a liberal inclusion criterion often find conflicting results. 
Taking just the bottom 5% s dyscalculic, a study of 8- to 10-year-old children 
found that the dyscalculic group was slower than the control group on both 
symbolic and nonsymbolic comparison (Landerl & Kölle, 2009).

We can turn to the neuroscience data to more accurately identify the core  deficit 
in dyscalculia. Kucian et al. (2006) conducted the first fMRI study of an neuropa-
thology underlying dyscalculia. A group of 11-year-old children with dyscalculia 
and a group of age-matched controls performed a nonsymbolic comparison task 
and an approximate addition task, both of which likely tapped discrete magnitude 
representations. The largest group differences were observed on an approximate 
addition task, where the dyscalculic group displayed less activation in a bilateral 
frontoparietal network including MFG, IFG, and IPS. The finding of a neural 
difference for an approximate reasoning task supports the hypothesis that the 
numerosity representations themselves be defective, not just the mapping from 
symbol to the representations. An additional insight from this study is that there 
is no qualitative difference between the arithmetic  networks of typically devel-
oping children and those with dyscalculia – both activated the same network of 
frontal and parietal area. Rather, there is a quantitative difference in the degree to 
which the  network is activated. In  particular, the lower IPS activation in the 
dyscalculic group implicates a  weakened representation of numerosity.

Price et al. (2007) investigated differences between a group of 12-year-old 
 children with dyscalculia and a group of age-matched controls using a nonsym-
bolic comparison task. (Dyscalculia was defined liberally, as mathematical 
achievement at least 1.5 standard deviations below the mean.) Behaviorally, the 
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two groups were comparable. However, the fMRI data revealed an important cor-
tical difference: whereas the control group showed the typical neural distance 
effect in right IPS, the dyscalculia group did not. These results suggest a weak-
ened magnitude representation in people with dyscalculia, consistent with the 
numerosity proposal. They also demonstrate how neuroscience methods can 
reveal differences not visible at the behavioral level.

There are also structural differences in the brains of dyscalculics that turn out 
to be in the left and right IPS, precisely the brain areas implicated in numerosity 
processing (see Figure 8.2). The first such study was by Isaacs, Edmonds, Lucas, 

(A)

(B)

(C)

Figure 8.2 Reduced grey-matter density in the numerosity-processing regions of 
dyscalculic brains. (A) Brain areas dedicated to numerosity processing (Castelli et al., 
2006, with permission). (B) Reduced grey-matter density in left parietal numerosity-
processing area in dyscalculic adolescents (Isaacs et al., 2001, with permission). (C) 
Reduced grey-matter density in right parietal numerosity-processing area in dyscalculic 
children (Rotzer et al., 2008, with permission).
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and Gadian (2001), who found a reduction in grey-matter density in a small 
region in the left IPS; Rotzer et al. (2008) subsequently found reduced grey 
matter density in the right IPS in younger subjects, reflecting the developmental 
trajectory mentioned above, that simple number processing, especially of non-
symbolic numerosities, goes from a predominantly right hemisphere locus to a 
bilateral one.

Lifelong learning

Developmental dyscalculia can persist into adulthood, though it is unclear what 
proportion of early dyscalculic learners remains in this condition. One study by 
Shalev, Manor, and Gross-Tsur (2005) found that some 40% of 11-year-olds were still 
dyscalculic at age 17, and almost all were in the bottom quartile on a standardized 
arithmetic task. However, Shalev et al. used a criterion of two years below age norms, 
but did not test specifically for a core deficit. Certainly, it is not hard to find examples 
of adults with severe math difficulties and a core deficit, such as “Charles,” described 
by Butterworth (1999). There have been few published functional studies of the 
brains of adult developmental dyscalculics. One example that used EEG with two-
digit addition problems found that older subjects tended to use both  hemispheres 
while younger ones used the left hemisphere predominantly, and  suggested that the 
younger subjects showed more strategic flexibility in how they solved the problems 
(El Yagoubi, Lemaire, & Besson, 2005). Nevertheless, thorough investigations of 
the effects of normal aging on the brain systems for mathematics are urgently 
needed, along with studies of the effects of clinical conditions that are associated 
with aging, such as mild cognitive impairment and the dementias.

Educating the Mathematical Brain

One obstacle for bridging from neuroscience to education is that neuroscience 
methods are not easily portable to the classroom. However, neuroscientists are 
beginning to isolate elements of mathematical thinking and learning that occur 
in school, and study them in carefully controlled laboratory settings. The results 
are pointing the way to new instruction for typical classrooms, and to promising 
instructional interventions for dyscalculia. It is true that, to date, neuroscience 
has not had the impact on education – for good or ill – that cognitive and devel-
opmental psychology has had. Thorndike’s (1922) book, The Psychology of 
Arithmetic, created a focus on drilling simple number bonds. In the 1930s, 
Brownell, in several important publications, applied psychological ideas about 
meaningful practice to how math should be taught (Brownell, 1928, 1935, 1938).
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In the 1950s and 1960s, Piaget’s “constructivist” theories about the nature of 
cognitive development were very influential. Constructivism emphasizes the 
child’s construction of new schemas (accommodation) when new stimuli cannot 
be understood using existing schemas (assimilation). Both Montessori in her 
schools, and Gattegno in the use of Cuisenaire rods, were deeply influenced by 
Piaget. Many mathematics education researchers continue to advocate construc-
tivist instruction over direct instruction (Bransford, Franks, Vye, & Sherwood, 
1989; Duffy & Jonassen, 1992; von Glasersfeld, 1989). Whereas direct instruction 
assumes that knowledge can be rather directly communicated (“transmitted”) 
from teachers to students, constructivist instruction proposes that students must 
construct their own knowledge if it is to be meaningful. The emphasis is on 
particular kinds of activity such as game playing and other hands-on learning.

More recently, Johnson, Karmiloff-Smith, and Mareschal, and their colleagues, 
have proposed a line of research, based on Piagetian ideas, that they call “neuro-
constructivism” (see Westermann, Thomas, & Karmiloff-Smith, 2010, for a recent 
review). In this, neural specializations in the brain are not directly inherited – the 
brain does not start out modularized for specific cognitive functions – but rather 
brain organization is shaped by interaction with the environment, and specializa-
tions emerge in a consistent way largely as a result of the common structures of 
experience and some intrinsic biases in neural receptivity to particular types of 
information.

Here we focus on two areas where neuroscience can inform education: first, 
methods of instruction; and, second, individual differences, including new 
approaches to remediating dyscalculia.

Methods of instruction

Practice and transfer Direct instruction is the term for a range of traditional 
classroom activities, including lecture, recitation, reviews, seatwork, home-
work, quizzes, and exams (see, e.g., Rosenshine, 1995). In an important early 
study, Delazer and  colleagues investigated the neural consequences of one 
aspect of direct instruction, practice (Delazer et al., 2005). Adults practiced 
solving 18 complex multiplication problems, each involving a one-digit 
operand and a two-digit operand. These arithmetic facts are not normally 
memorized in school. Participants subsequently verified complex 
 multiplication problems in the scanner, half of which were trained and half of 
which were untrained. Participants were faster and more accurate on trained 
versus untrained problems. More importantly, the two classes of problems 
activated different cortical networks. The network activated by untrained 
problems included bilateral IPS (associated with magnitude processing) and 
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bilateral IFG (associated with executive function and verbal working memory). 
This is essentially the same  frontoparietal network that Grabner et al. (2009) 
found when participants self-reported using effortful, strategic processing to 
solve simple arithmetic problems. By  contrast, the trained network included 
left AG (associated with memory retrieval when solving simple arithmetic 
problems). These findings demonstrate that  following practice – a component 
of direct instruction – there is a shift from strategy-based processing to mem-
ory-based processing, specifically retrieval of verbally/symbolically coded 
arithmetic facts.

Ischebeck et al. (2006) investigated whether there are different practice effects 
for multiplication and subtraction. Adults practiced complex multiplication and 
subtraction problems outside the scanner, and then verified trained and 
untrained problems in the scanner. Participants were again faster and more 
accurate on trained versus untrained problems, regardless of the operation, rep-
licating and extending the work of Delazer et al. (2005). At the neural level, the 
results for multiplication also replicated the work of Delazer et al. (2005), with a 
training shift from a frontoparietal network (including IPS) to left AG, again 
suggesting a shift from strategy- to memory-based processing. Critically, the 
results for subtraction were different: both trained and untrained problems 
recruited the frontoparietal network associated with strategy-based processing. 
This suggests that the neural consequences of practice are contingent on the 
mathematical concept being practiced.

To sum up the results of these two studies, for complex multiplication, the 
improvement in behavioral performance following practice is a function of a 
shift from strategic to memory-based processing. This is the analogous to the 
behavioral patterns and cortical shift that Rivera et al. (2005) documented for 
simple addition and subtraction over development, where the left inferior 
parietal lobe becomes increasingly specialized for addition. By contrast, in the 
case of complex subtraction, the continuous improvement in behavioral 
performance following practice is a function of increased efficiency in the fron-
toparietal network associated with strategic processing (Ischebeck et al., 2006). 
These findings are important, suggesting that if the pedagogical goal is to autom-
atize subtraction, then mathematics educators should look beyond direct 
instruction methods.

Individual differences

Neuroscience can help identify cognitive strengths and weakness in individual 
learners in a way that can inform the design of an educational context appro-
priate for that learner. This means ensuring that the learning context is adaptive 
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to the learner’s current needs and “zone of proximal development” (Vygotsky, 
1978). This will include specifying the content that needs to acquired and a pace 
of progression suitable for the learner.

Dyscalculia This approach is perhaps best exemplified in the learning contexts 
designed for dyscalculic learners. We have suggested that neuroscience has iden-
tified the core deficit, that is, the target for intervention – a deficit in processing 
numerosities. This does not however specify how dyscalculic learners can be 
helped.

One needs to turn to pedagogic principles and the best practice of special 
educational needs (SEN) teachers to design appropriate instruction. From a 
pedagogical perspective, activities that require the manipulation of concrete 
objects provide tasks that make number concepts meaningful by providing an 
intrinsic relationship between a goal, the learner’s action, and the informational 
feedback on the action. This kind of feedback provides intrinsic motivation in a 
task, and this is of greater value to the learner than the extrinsic motives and 
rewards provided by a supervising teacher (Bruner, 1961; Deci, Koestner, & 
Ryan, 2001).

Experienced SEN teachers will use Cuisenaire rods, number tracks, and 
playing cards to give learners experience of the meaning of number. Through 
playing games with these physical objects, learners can discover from their 
manipulations, for example, which rod fits with an 8-rod to match a 10-rod, or 
how many beads to put out on the track to get from the given number to desired 
number, and so on (Butterworth & Yeo, 2004). These tasks afford discovery 
learning and the construction of solutions, which in turn enable learners to com-
pare their solution with the correct solution, and if necessary adjust their own 
solution. These are powerful mechanisms for learning with understanding 
(Papert, 1980; Piaget, 1952).

Ideally, the experienced teacher will adapt the activities to match the learner’s 
current level of understanding, and find ways to push the understanding into the 
zone of proximal development. However, this may require extensive one-to-one 
teaching, which may not always be possible, and which, in any case, will be 
expensive.

Tasks adapted to the learner’s current level can now be achieved using soft-
ware games that embody the pedagogic principles outlined above. The Number 
Race and Graphogame-Maths are adaptive games based on neuroscience that 
target basic numerosity processing, and appear to be effective (Räsänen, 
Salminen, Wilson, Aunioa, & Dehaene, 2009). However, neither requires 
learners to manipulate numerical quantities. Manipulation is critical for 
providing an intrinsic relationship between a task goal, the learner’s action, and 
informational feedback on that action.
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An approach that emulates the manipulative tasks used by SEN teachers has 
been taken in adaptive software that enables the construction of a solution, pro-
vides informational feedback, and offers a means to match the learner’s solution 
to the correct solution in the case of error. See Butterworth et al. (2011) for 
further discussion. Examples can be downloaded from http://www.number-
sense.co.uk/.

These games have not been subjected to large-scale evaluation, but one 
important advantage of adaptive software is that learners can do more prac-
tice per unit time than with a teacher. Thus, 12-year-old SEN learners using 
a number bonds game managed 4–11 trials per minute, while in an SEN 
class of three supervised learners only 1.4 trials per minute were completed 
during a 10 min observation. In another SEN group of 11-year-olds, the 
game elicited on average 173 learner manipulations in 13 min (where a 
 perfect performance, in which every answer is correct, is 88 in 5 min, since 
the software adapts the timing according to the response) (Butterworth & 
Laurillard, 2010).

Butterworth et al. (2011) conclude that “At present it is not yet clear whether 
early and appropriately-targeted intervention can turn a dyscalculic into a typ-
ical calculator. Dyscalculia may be like dyslexia in that early intervention can 
improve practical effectiveness without making the cognitive processing like 
those of the typically developing.”

In dyslexia research, appropriate phonological training can have the effect of 
making patterns of neural activity more like those in typical readers (Eden et 
al., 2004). This is important, since it takes the measurement of the effects of an 
intervention beyond behavior into its underlying mechanisms. Is the same true 
for dyscalculia? So far, there has only been one study published about the effects 
of this kind of intervention on patterns of neural activity. In this study, by von 
Aster’s group in Zurich, nine-year-old typical learners and matched nine-year-
old dyscalculics (1.5 SD below average) were trained using a specially designed 
computer game (Kucian et al., 2011). The game required landing a spaceship 
on a number line from 0 to 100, according to the number on the spaceship, or 
simple calculation on the spaceship (see Figure 8.3(A)). The game was played 
for 15 min a day, 5 days a week, for 5 weeks. The effects of the training were 
assessed behaviorally, and were effective for both dyscalculic and typical 
learners, with a bigger effect for the dyscalculics, who nevertheless remained 
worse than the controls (see Figure  8.3(B)). Activation was measured in 
an  fMRI task that required the child to determine whether three numbers 
were in ascending or descending order, compared with a control task in which 
they had  to determine whether the digit “2” was present. In this situation, 
dyscalculics showed less parietal activation, but more frontal activation. The 
authors conclude that the “results lend further support to a deficient number 
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Figure 8.3 Effects of training on arithmetical performance and patterns of neural 
activity. Nine-year-old dyscalculic and typical learners were trained on a simple arith-
metical tasks using a computer game for 15 min a day, 5 days a week, for 5 weeks. (A) 
The game “Rescue Calcularis” required the learner to land the spaceship on the number 
line below. In the top panel, the task was to land it at 42; in the bottom panel, it was to 
land at 18, the solution to 27 − 5. (B) Training was effective for both groups, but more for 
the dyscalculics (black bars). Nevertheless, they still failed to reach typical levels of 
performance after the training.
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 representation in the parietal lobe associated with dyscalculia, causing stronger 
engagement of supporting frontal lobe functions such as working memory and 
attentional control to solve a numerical task” (p. 792). The effect of training was 
striking. In both groups, there was a reduction in frontal activation, suggesting 
that the training transferred to the fMRI task, making it more automatic and 
thus dependent on parietal areas, and less strategic and thus dependent on 
frontal areas. This effect was even more marked in the dyscalculics. The effects 
of training, therefore, tended to move the dyscalculics to a more typical pattern 
of both behavior and neural activity, paralleling the shift observed in dyslexia 
training studies.

A Reduced activation after training

B Negative interaction
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Figure 8.3 (continued) (C) Top panel: group differences in brain activity in a different 
number task before training (see text). The dyscalculics showed more frontal activation 
in the task compared with a control task. Bottom panel: training reduced frontal activity 
in both groups, but more so in the dyscalculics (negative interaction). (From Kucian 
et al. (2011) with permission.)
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Future Directions

Although neuroscience studies of mathematical thinking are in their infancy, 
they are already shedding light on topics of great relevance to education, including 
mathematical development, the spatial basis of mathematical concepts, the 
nature of individual differences in achievement, the neural correlates of different 
 instructional approaches, the core deficit in dyscalculia, and the design and eval-
uation of effective remediation. Mathematical thinking is already an important 
bridge between education and neuroscience, and its importance will only grow. 
A scientific explanation of the neural bases of mathematics is necessary for an 
evidence-based education: for understanding why some instructional interven-
tions (but not others) work for some children (but not others), and for informing 
the design of new instruction. Conversely, mathematics is one of the core symbol 
systems of human culture, and investigating the neural bases of this symbol 
system cannot help but generate new empirical paradigms and theoretical expla-
nations that will enrich our understanding of the brain more generally.

Much of the research to date has focused on natural numbers and arithmetic 
operations defined over them. Comparatively little is known about the 
psychological and neuroscience underpinnings of more abstract and advanced 
concepts in mathematics such as negative numbers, place value, and algebra. We 
briefly review some initial attempts to fill this gap here. We also preview emerg-
ing research on the benefits of neural stimulation for mathematics learning.

Negative numbers

Recent research has illuminated how adults mentally represent negative numbers. 
Adults show a symbolic distance effect for comparisons of negative numbers that 
parallels the one for comparisons of natural numbers, for example comparing −1 
versus −4 is faster than −1 versus − -9. Some interpret this as evidence that negative 
numbers are mentally represented as magnitudes (Varma & Schwartz, 2011). Others 
argue that negative numbers do not have magnitude representations, but are instead 
mapped to natural numbers via symbolic rules (Tzelgov, Ganor-Stern, & Maymon-
Schreiber, 2009). Under this account, when comparing negative numbers (e.g., 
which of −1 versus −4 is greater?), people first strip the negative signs, then reverse 
the judgment (e.g., which of 1 versus 4 is lesser?), and finally consult magnitude 
 representations of natural numbers.

Mixed comparisons of negative numbers and natural numbers have the poten-
tial to resolve this debate. Tzelgov et al. (2009) found no effect of distance for 
mixed comparisons, with near comparisons (e.g., −1 versus 2) made as fast as far 
comparisons (e.g., −1 versus 7). They interpreted this as evidence that people use 
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symbolic rules such as “positives are greater than negatives.” However, more recent 
studies have found distance effects for mixed comparisons (Gullick, Wolford, & 
Temple, 2011; Krajcsi & Igács, 2010; Varma & Schwartz, 2011). Surprisingly, these 
effects have been in the inverse direction, with near comparisons faster than far 
comparisons, suggesting that the magnitude representations of negative numbers 
are spatially transformed.

Neuroscience data can potentially inform whether negative numbers are 
understood as magnitudes or using rules. Early studies are finding neural dis-
tance effects in bilateral IPS for comparisons of negative numbers and for mixed 
comparisons of negative numbers and natural numbers, consistent with magni-
tude representations (Blair, Rosenberg-Lee, Tsang, Schwartz, & Menon, 2010; 
Gullick et al., 2011). However, these studies also find neural distance effects in 
prefrontal areas associated with controlled rule processing. Further research is 
required to untangle the neural correlates of negative number understanding.

Some researchers are beginning to study the cognitive development of integer 
understanding (Varma & Schwartz, 2011). Others are asking the educational 
 neuroscience question of whether different kinds of instruction – focusing on 
symbolic rules such as “positive particles cancel negative particles” versus visuomo-
tor movements along number lines – set up different kinds of representation, with 
correspondingly different neural correlates (Tsang, Blair, Bofferding, Rosenberg-
Lee, & Schwartz, 2011). Again, we expect these to be fruitful areas for future research.

Place value

Place-value notation is a generative system for naming numbers using a small set 
of symbols. Our base-10 system uses the number symbols 0–9 plus a few extra 
symbols (“ . ”, “−”) to name very large and very small numbers using relatively few 
digits. Place-value notation is important because its structure supports the stan-
dard algorithms for “long” arithmetic, for example enabling “borrowing” and 
“carrying.” For this reason, mastering place-value notation is an important goal of 
early elementary education

Early research on place-value notation focused on how adults and children 
understand multidigit natural numbers. Consider the task of judging which of 79 
versus 17 is greater. Initial studies suggested that, for large numbers such as these, 
people do not directly consult magnitude representations. Rather, they understand 
them as composite representations, sequentially comparing the face value of each 
place from left to right until a judgment is possible (Hinrichs, Berie, & Mosell, 
1982; Hinrichs, Yurko, & Hu, 1981). Although some studies have challenged 
this finding (Dehaene, Dupoux, & Mehler, 1990), the results have largely held 
up. A particularly diagnostic finding is the incompatibility effect: when comparing 
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two-digit numbers, response times are slower when the judgment based on the 
tens places conflicts with the judgment based on the ones place. For example, peo-
ple are slower to compare 81 versus 19 than 79 versus 17 (Nuerk, Weger, & Willmes, 
2001). Developmental studies of the incompatibility effect indicate that children 
have the adult composite representation of multidigit numbers as early as second 
grade (Landerl & Kölle, 2009; Nuerk, Kaufmann, Zoppoth, & Willmes, 2004).

Neuroscientists are identifying the neural correlates of place value in adults. 
Administering TMS over left AG while adults compare two-digit numbers dis-
rupts number comparison (Göbel, Walsh, & Rushworth, 2001). Recall that this 
area is associated with the retrieval of symbolically or verbally coded arithmetic 
facts, and not with magnitude processing. This finding suggests that the 
composite representation of multidigit numbers is accessed and processed using 
symbolic rules. Further evidence was provided by a study investigating the 
neural basis of the incompatibility effect, which found greater activation for 
incompatible versus compatible comparisons in left SMG, an area adjacent to 
left AG (Liu, Wang, Corbly, Zhang, & Joseph, 2006). However, this study also 
found neural incompatibility effects in a number of other areas, including 
bilateral occipitotemporal cortex associated with processing the visual forms of 
numbers, prefrontal areas associated with controlled symbolic and attentional 
processing, and IPS, which is associated with magnitude processing. Thus, the 
neural representation of multidigit numbers remains an open question.

The emerging scientific understanding of how adults and children understand 
place value promises to inform progress in education. For example, a recent study 
found larger incompatibility effects in elementary-school-aged children with 
dyscalculia versus those who were typically developing, indicating that weakened 
composite representations of very large numbers is associated with low math 
achievement (Landerl & Kölle, 2009). Further research following up on this tanta-
lizing result is needed.

Algebra

Anderson and colleagues have conducted a series of fMRI studies of algebra 
problem solving. These studies have been driven by a theoretical model that 
assigns to left  IFG the function of retrieving information from long-term 
memory, and to left  posterior parietal cortex (PPC; an area posterior to IPS and 
AG) the function of maintaining and transforming mental representations 
(Anderson, 2007). These functions are critical for solving simple algebra 
equations (e.g., x/3 + 2 = 8), which requires both retrieving relevant arithmetic 
facts (e.g., 8 − 2 = 6) and applying these facts to transform the current equation 
into a newer, simpler equation (e.g., x/3 + 2 = 8 → x/3 = 6). As predicted by the 
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model, the greater the number of arithmetic facts that must be retrieved to solve 
an algebra equation, the greater IFG activation, and the greater the number of 
transformations that must be performed, the greater PPC activation (Danker & 
Anderson, 2007; Stocco & Anderson, 2007).

Building on this basic finding, Sohn et al. (2004) investigated the neural 
processes associated with solving algebra equations versus story problems. They 
found increased bilateral PPC activation when solving algebra equations, consis-
tent with the sequential transformations. By contrast, they found greater left IFG 
when solving story problems, consistent with this area’s role in verbal working 
memory and “expressive” language.

Qin et al. (2004) took the next step towards educational relevance, investi-
gating the effect of practice in a sample of children aged 12–15. The children 
practiced solving multistep algebra equations over the course of 5 days. 
Behavioral performance improved, of course. More interestingly, both left IFG 
and left PPC were less active after training, particularly as the number of trans-
formations a problem required increased. This pattern was different from that 
observed in an earlier study of adults, who only showed a practice effect in left 
IFG (Qin et al., 2003). Taken together, these studies suggest that practice will 
have different effects in children versus adults.

The first neuroscience studies of fractions (Schmithorst & Brown, 2004), 
calculus (Krueger et al., 2008), and other advanced mathematical topics are 
beginning to appear, although much work remains to be done. Educational neuro-
scientists are also taking the first tentative steps towards incorporating neural 
measures of mathematical understanding into computer tutors, which typically 
depend solely on behavioral measures such as number of problems correct 
(Anderson, Betts, Ferris, & Fincham, 2010, 2012). We expect rapid progress in 
understanding the neural bases of abstract mathematical thinking and applying 
these insights to mathematics education in the future.

Neural stimulation

One study has looked at the effect transcranial direct current stimulation (TDCS) 
on learning novel symbols (Cohen Kadosh, Soskic, Iuculano, Kanai, & Walsh, 
2010). During TDCS, a weak current is applied constantly over time to enhance 
(anodal stimulation) or reduce (cathodal stimulation) the excitation of neuronal 
populations, with maximal effect on the stimulated area beneath the electrodes. 
Anodal stimulation over the right parietal improved learning of the novel symbols 
designed to be equivalent to numbers, and this improvement lasted until retesting 
six months later. This study suggests that more direct intervention in neural 
processes could help learning, especially for those struggling such as dyscalculics.
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