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Does math education contribute to refine the phylogenetically inherited capacity to approximately

process large numbers? The question was examined in Western adults with different levels of math

education. Unschooled adults who never received math education were compared to unschooled-

instructed adults who did not attend regular school but received math education in adulthood, and to

schooled adults who attended regular school in childhood. In the number-comparison task (Exp. 1),

the unschooled group was slower and made more errors than the other groups both when numerical

symbols and nonsymbolic dot collections were presented. In the forced-choice mapping task (Exp. 2),

the unschooled group experienced more difficulty than the others in linking large nonsymbolic and

symbolic quantities, as well as in matching purely nonsymbolic quantities. These results suggest that

Western adults who did not receive math education have less precise approximate number skills than

adults who acquired exact number competences through math education.

& 2013 Elsevier GmbH. All rights reserved.
1. Introduction

To what extent can biologically-determined cognitive skills be
modified by cultural inventions? Numerical capacities constitute a
good candidate to examine this question since their development
involves both biological and cultural determinants. Indeed, it is often
assumed that number skills are built upon a primitive approximate
number system shared phylogenetically and that they are also driven
by the acquisition of numerical notations and by mathematical
education [7]. Here, we examined through behavioral techniques
whether the formal acquisition of math skills is capable of modifying
preexistent cognitive number abilities. Schooled and unschooled
adults who benefited from different types of education were com-
pared on large number apprehension tasks to assess whether math
education affects the development of the inherited capacity to
approximately process number magnitude.

Current conceptions about the development of number abilities
assume that humans possess a core number system which enables
them to approximately perceive or compare quantities and constitutes
the foundation of later exact number skills (e.g., [7,45]). For instance,
newborns already appear sensitive to numerical congruency between
visual and auditory stimuli [23], demonstrating a rudimentary ability
H. All rights reserved.
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to capture numerical properties abstracted from sensory information.
Habituation studies have also demonstrated that 6-month-old infants
are able to discriminate between collections of dots on the basis of
number, at least as long as the numerical distance or numerical ratio is
sufficiently large (e.g., 2:1 ratio such as 16 vs. 8 dots, or 24 vs. 12 dots,
see [4,49,51,52]), suggesting that their representation of number is
still of limited precision. The observation that performance in number
discrimination can be predicted by the numerical ratio in human
infants as well as in other species (e.g., see [8] for a review) supports
the view that humans and non-human animals share an approximate
number system, which is the product of biological evolution, emerges
independently of language or of mathematical education [11,51], and
endows them with the ability to encode the numerosity of environ-
mental objects or events in such a way that its precision decreases in
proportion to number magnitude.

Even though human infants may come to the world equipped
with perceptual mechanisms enabling them to approximately
apprehend number magnitude, the precision of the approximate
number system evolves across the life span, as reflected by the
fact that accuracy in nonsymbolic number comparison tasks
increases with age. This developmental trend has been estab-
lished both during infancy [26,48,50] as well as in later childhood
[19,41]. For instance, Halberda and Feigenson [19] demonstrated
that adults can detect smaller numerical differences between sets
of dots than 5-year-old children, suggesting that the acuity of the
approximate number system increases between childhood and
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adulthood. In a recent review, Piazza [40] similarly reported that
young adults would be able to perceive arrays contrasting by an
8:7 ratio as different, whereas the performance of 5-year-olds
would be limited to ratios 5:4 or above.

Several authors have suggested that such developmental
changes could be due to maturational processes, but some have
also envisaged the possibility that the improvement might be
influenced by formal mathematics education and school activities
such as counting or arithmetic [19,20,34,41]. Until recently, the
two hypotheses regarding the processing of large numbers have
not been tested directly, and unfortunately they cannot be
disentangled on the sole basis of the aforementioned past studies
because when children are assessed at different ages or compared
to adults, maturation and schooling effects are confounded.
However, one piece of evidence in favor of the idea that the
human capacity to approximately process large numbers might
be partly shaped by the formal acquisition of number symbols
and of exact numerical knowledge comes from research on
indigenous populations, such as the Piraha [13,17] or the
Munduruk �u [43]. Piraha and Munduruk �u are Amazonian popula-
tions who have received little or no schooling experience and
whose language for numbers is very limited. For instance, the
Munduruk �u have words for representing small quantities ranging
from one to five and very rough quantifiers, such as the equiva-
lent of ‘‘some’’ or ‘‘many’’, for larger quantities. Pica and collea-
gues showed that the Munduruk �u have developed approximate
number abilities despite their limited number–word lexicon.
Indeed, they are able to compare large sets of dots and decide
which set is numerically the biggest, demonstrating that they can
spontaneously extract numerosities from large sets of dots.
According to the authors, this finding provides evidence that the
approximate number abilities constitute a fundamental compe-
tence, arising independently of language and of instruction.
However, closer analysis of the data indicates that the
Munduruk �u’s approximate number skills were less accurate than
those of the French participants. Indeed, in the dot number
comparison task, the Munduruk �u were slower than the French
controls and failed to discriminate numerical differences as slight
as those detected by the controls. Because it cannot be explained
by maturational processes, we believe that the observation of
such group differences might be taken as evidence for the
hypothesis that mathematical education influences the develop-
ment of the capacity to approximately process number
magnitude.

However, besides the fact that the Munduruk �u do not steadily
receive education in mathematics, other cultural factors might
also be at play. Actually, the use of number is very restricted in
their culture: in addition to having an extremely limited number–
word lexicon, the Munduruk �u also use verbal numerals most of
the time in an approximate manner only, they do not use
counting spontaneously or correctly, and they usually do not
practice monetary exchange which could provide experience with
numbers (see [43], Supporting Online Information). For these
reasons, it remains unclear whether the particular pattern of
performance observed in this population results either from their
non-Western and non-numerically based culture or from the lack
of mathematical education itself.

Therefore, investigating the number skills of people who are
living in a Western cultural context but who did not benefit from
education in mathematics would be a suitable approach to address
more directly the impact of math education on approximate number
processing. In a study aimed at standardizing and validating their
number processing test battery, Deloche and colleagues [10]
assessed a wide range of basic numerical skills in healthy Western
illiterate and semi-literate adults. The data indicated large inter-
individual differences and revealed that illiterate Western adults are
not completely devoid of verbal counting skills, knowledge of Arabic
numerals and calculation procedures. In other words, despite the
lack of formal education in mathematics, Western illiterates are not
completely ‘‘innumerate’’, which contrasts with their inability to
read even isolated letters or to deal with phonemic segmentation
[29,30].

In a very recent study, Zebian and Ansari [53] went a step
further by assessing the elementary ability to process small
quantities ranging from one to nine in minimally literate and
highly literate Syrian adults. Minimally literate participants had
received no more than one year of schooling and they were able
to read single-digit Arabic numerals but not words, while highly
literate participants had attended school for more than 10 years
and had no reading difficulties. Whereas minimally literate
participants showed a steeper effect of numerical distance when
asked to compare single digits, no group difference was observed
in the ability to compare the corresponding nonsymbolic numer-
osities. Although the authors acknowledged that the strategies
used to compare nonsymbolic stimuli numerically could differ
according to the level of literacy and education, they interpreted
these results as showing that the capacity to process nonsymbolic
numerical magnitude is not affected by enculturation. However,
because the processing of small numbers could differ from that of
larger numbers (e.g., [15,16,35]), drawing such a general conclu-
sion on the sole basis of results implying small numerical
quantities only may seem premature. Examining whether school-
ing and math education shape the ability to process large
numerical magnitudes was the aim of the current study.

Two experiments designed to assess approximate number
skills with large numbers were administered. In Experiment 1,
the participants received a classic number comparison task, in
which they had to judge which of two quantities was the
numerically largest one. The numerical ratio was manipulated
in order to assess whether performance showed the signature of
the approximate number system. Two formats of presentation
were used. In Exp. 1A, the participants had to compare sets of dots
in order to assess their core approximate number skills. In Exp.
1B, they were asked to compare two-digit Arabic numbers in
order to evaluate their access to number magnitude from numer-
ical symbols. In Experiment 2, the participants received a Forced
Choice Mapping Task, in which they had to choose among three
quantities the one that numerically matched a target-quantity
previously presented. The numerical distance between the target
and the choice-quantities was varied so that trials included
difficult items (close distractors) as well as easier items (distant
distractors). Two formats of presentation were used. In the
nonsymbolic (NS) mapping condition, the target and the choice-
quantities were all nonsymbolic. In the NS/S mapping condition,
the target was nonsymbolic whereas the choice-quantities were
symbolic or vice versa.

The tasks were administered to three groups of adult participants,
living in Portugal, who had benefited from different types and levels
of education: unschooled participants, who had never received
education in mathematics, were compared to unschooled-instructed

participants, who had never attended regular school but had received
non-formal education in mathematics during adulthood, and to
schooled participants who had attended regular school during child-
hood. The comparison of these three populations offers several
advantages. First, because the three groups are composed of parti-
cipants of the same age, the observation of group differences cannot
be attributed to maturation, thus contrasting with studies based on
the comparison of preschoolers and older children or adults. Second,
the effects cannot be ascribed to the cultural environment in which
they live or to differences in the cultural prominence of number,
because all three groups share an identical Western cultural context.
Third, the comparison of unschooled-instructed participants to
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schooled participants helps to distinguish between the impact of
formal schooling and the effect of mathematical education. As a
consequence, clear-cut predictions can be made. If the capacity to
process number magnitude follows age-related mechanisms but
develops independently of schooling and of mathematical learning,
performance should be equivalent in the three groups of participants.
By contrast, if mathematical education enhances the precision of the
approximate number skills, the unschooled group should demon-
strate poorer performance than the other two groups. Finally, if
formal schooling itself is a key determinant of number skills,
performance should be poorer in the unschooled group and in the
unschooled-instructed group than in the schooled group.
2. Experiment 1

2.1. Method

2.1.1. Participants

In the current study, we looked for the potential effect of
education on performance in approximate number tasks. Thus,
three groups of adult participants, who live in a similar Western
cultural context but who had received different types and levels
of education, were tested in Portugal: 14 participants had never
attended school (Unschooled group), 15 had never attended
regular school during childhood but had received reading, writing
and math education during alphabetization classes for adults
(Unschooled-instructed group), and 15 participants had received
standard school education during childhood (Schooled group).
Participants from the unschooled-instructed group had attended
literacy and numeracy courses for approximately 4 years
(SD¼1.7)2, during five days a week, and for three hours per day.
The courses that those participants received put emphasis on
problems they were experiencing in their everyday life, and were
thus directly related to their professional occupation. As most of
these participants were involved in trade during their work
(implying sales activities and practice of mental calculation
because of money exchange), emphasis was put on mathematics
during the courses, especially on numerical symbols learning and
on exact arithmetic. Participants from the schooled group bene-
fited on average from approximately 8 years of formal education
(SD¼3.4) during childhood.

The validity of the group assignment was further assessed
through the administration of a reading test. Indeed, literacy has
been used as a proxy for education in many other studies (e.g.,
[24,39,53]), and reading tests seem thus appropriate to check for
the level of education that the participants reported to have
received. The participants from the unschooled group were
expected not to be able to read, in contrast to the participants
from the two other groups. The evaluation of reading included a
letter identification task, a reading test including six words and
six pseudowords, and a reading test including sentences ([27],
adapted for Portuguese). One female participant was excluded
from the initial sample of unschooled participants because,
though unable to read any sentence, she could read 3 words
and 2 pseudowords among the 12 items from the reading test. All
other participants from the unschooled group were unable to read
any item from the reading test. Participants from the unschooled-
instructed group read at least 75% of the stimuli from the reading
test. Participants from the schooled group experienced no diffi-
culty in the reading tests.
2 Since precise data about the time spent in adult education classes were

missing for 5 of the 15 unschooled-instructed participants, standard deviation was

here calculated on the basis of 10 participants only.
All participants also performed the Mini-Mental State Exam-
ination (MMSE) in order to guarantee that none of them had any
cognitive impairment ([12]; adapted for portuguese, see [18]).
The MMSE assesses time and space orientation, immediate and
delayed verbal memory, attention and calculation, language and
visuo-constructive abilities. The MMSE leads to a maximum total
score of 30. Since performance on specific MMSE items has been
shown to be influenced by education (e.g., [1,3,38]), previous
studies used different cut-off scores according to the educational
level to differentiate individuals with intact cognitive functioning
from patients with dementia. Specifically, based on the validated
Portuguese adaptation of the MMSE [18], cut-off points of 15, 22
and 27 were used in the present study for unschooled partici-
pants, participants with 1–11 years of education, and participants
with 12 years of education or more respectively. All the partici-
pants in the sample had a MMSE score above the cut-off points
defined according to their educational level (Unschooled:
M¼20.5, SD¼3.3; Unschooled-instructed: M¼28.0, SD¼1.3;
Schooled: M¼28.0, SD¼2.0).

The final sample included 13 unschooled participants (Mean
age¼45.4 years-old, SD¼18.9), 15 unschooled-instructed partici-
pants (Mean age¼41.5, SD¼ 16.9) and 15 schooled participants
(Mean age¼47.4, SD¼14.8). The groups were matched for age, as
confirmed by an ANOVA showing no significant difference in age
between groups, F(2, 43)o1. All participants were paid for their
participation.

A numerical screening pre-test evaluating basic numerical skills
(counting, transcoding, calculation, and use of numbers in their
everyday life) was administered prior to the experimental tasks
(see Supplementary Information). A univariate ANOVA with
group as a between-subject factor was run for each basic
numerical skill included in the screening pre-test. Bonferroni
post-hoc contrasts indicated that the unschooled group per-
formed worse than both the schooled and unschooled-
instructed groups for all the measures (po .05), except for the
Counting Principles task for which there was no significant
difference between groups (see Table 1). This suggests that
participants who had not benefited from education in math
understand counting principles and are able to count small sets
of objects as efficiently as participants who received math
instruction (see [53], for compatible data). For the other mea-
sures, the scores obtained by the unschooled participants were
very heterogeneous, with some individuals performing extremely
poorly and others reaching levels similar to those obtained by the
schooled and unschooled-instructed participants. Except for the
Complex Calculation task, the unschooled-instructed group did not
significantly differ from the schooled group (pZ .05). In sum, the
results from the screening pre-test thus confirm that the numer-
ical skills usually taught during math classes are much lower for
most of the participants who had received no math education,
and they provide further validation to the group assignment.
2.1.2. Materials and procedure

Participants were asked to compare two quantities and to
choose the numerically largest as fast as possible. The largest
quantity was equally distributed among the eight decades ran-
ging from 20 to 90. The numerical ratio of the quantities to be
compared was manipulated so that four ratios of decreasing
difficulty were used (ratios were: 8:7, 8:6, 8:5 and 8:4). Two
variants of the quantity comparison task were designed, with the
same quantities but different presentation formats. In Exp. 1A,
participants were asked to compare sets of dots. To avoid
responses solely based on non-numerical continuous dimensions
rather than on numerosity, two perceptual conditions were
created. Half of the trials (n¼32) were congruent: the set with



Table 1
Basic numerical skills: mean score, standard deviation, score range (in brackets) for each group and analysis of variance results.

Schooled group (N¼15) Unschooled-instructed group (N¼15) Unschooled group (N¼13) F (2,40)

Counting sequence length (Max. 100) 100a70.0 [100–100] 99.3a72.8 [89–100] 64.8b734.3 [5–100] 15.52nn

Counting principles (Max.9) 8.7a7 .8 [6–9] 8.9a7 .5 [7–9] 7.5a72.5 [0–9] 3.24

Arabic to verbal transcoding

Number below 100 (Max. 9) 9a7 .0 [9–9] 9a7 .0 [9–9] 5.4b73.3 [0–9] 17.82nn

Number above 100 (Max. 6) 5.5a7 .7 [4–6] 4.6a7 .7 [3–6] 1.2b71.6 [0–4] 63.14nn

Verbal to Arabic transcoding

Number below 100 (Max. 9) 9a7 .0 [9–9] 9a7 .0 [9–9] 4.8b73.8 [0–9] 18.63nn

Number above 100 (Max. 6) 5.1a7 .9 [4–6] 4.1a71.6 [1–6] .8b71.6 [0–4] 34.80nn

Arithmetical facts score

Addition (Max. 6) 5.7a7 .6 [4–6] 5.4a7 .7 [4–6] 3.5b72.2 [0–6] 10.75nn

Subtraction (Max. 6) 5.8a7 .6 [4–6] 4.7ab71.4 [2–6] 4.0b72.5 [0–6] 4.38n

Multiplication (Max. 6) 4.5a71.1 [3–6] 3.2b71.2 [1–5] 1.0c71.2 [0–4] 30.23nn

Division (Max. 6) 4.9a7 .9 [3–6] 4.2a71.6 [0–6] 1.9b72.5 [0–6] 11.96nn

Total (Max. 24) 20.9a72.4 [16–23] 17.5a73.1 [11–21] 10.4b76.8 [0–21] 20.35nn

Arithmetical facts time (s)

Addition 17.7a78.2 [9–38] 29.4a717.4 [9–60] 82.3b742.3 [21–158] 23.77nn

Subtraction 16.7a78.3 [7–31] 42.2a729.6 [7–120] 87.6b750.1 [17–208] 15.91nn

Multiplication 37.2a729.2 [11–94] 63.4ab736.9 [12–136] 88.8b729.4 [38–128] 6.35nn

Division 30.4a716.3 [11–61] 65.7ab746.7 [17–209] 113.8b777 [39–255] 8.22nn

Total 25.5a711.0 [10–45] 50.2a729.5 [11–128] 89.3b742.3 [19–177] 15.51nn

Complex calculation total

Score (Max. 12) 9.9a72.0 [6–12] 6.5b73.2 [1–11] 1.5c72.8 [0–8] 33.61nn

Numbers in the every-day life

score 13.9a7 .4 [13–14] 13.3a71.4 [9–14] 6.4b74.6 [0–12] 33.40nn

Means in the same row that do not share alphabetic superscripts differ at p o .05 regarding the Bonferroni post-hoc tests.
n po .05.
nn po .01.
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the largest number of dots had a total occupied area three times
larger than the set with the smallest number of dots, so that the
numerosity covaried positively with the total occupied area. The
other half of the trials was incongruent: the set with the largest
number of dots had a total occupied area three times smaller than
the set with the smallest number of dots, so that the numerosity
covaried negatively with the total occupied area. Dot size was
heterogeneous within each set. In Exp. 1B, participants were
asked to compare two-digit Arabic numbers. To prevent
responses uniquely based on the rightmost digit (unit value),
the unit–decade compatibility was manipulated [36]. Half of the
trials involved compatible pairs of numbers: both the decade and
unit values of the largest number were bigger than the decade
and unit values of the smallest number (e.g. 78 vs. 36). The other
half of the trials involved incompatible numbers: the largest
number had a larger decade but a smaller unit than the smallest
number (e.g. 76 vs. 38). Examples of stimuli used in Experiment
1 are depicted in Fig. 1.

A fixation point was displayed during 1000 ms in the center of
the screen, followed by the presentation of two quantities: one on
the left side of the screen, the other on the right. The two
quantities remained visible until participants responded. The side
of the correct response was counterbalanced so that the largest
quantity appeared on the left side of the screen for half of the
trials, and on the right side for the other half. Participants had to
choose the largest quantity by pressing the corresponding key on
the response box (left-key or right-key). Response times were
recorded. Eight practice trials (4 with feed-back, 4 without feed-
back) followed by 64 experimental trials were administered for
Exp. 1A, and similarly for Exp. 1B.

2.2. Results

We first compared the mean percentage of errors to chance
level (50%) for each group separately, using one sample t-tests.
Then, the error rates and response times relative to the correct
responses were entered in a mixed ANOVA, separately for Exp. 1A
and Exp. 1B, with Condition and Ratio as within-subject factors,
and Group as a between-subject factor. Mean error rates and
response times for each Group as a function of Condition and
Ratio are displayed in Fig. 2A and B for the comparison of dots
(Exp. 1A) and of Arabic numbers (Exp. 1B) respectively.
2.2.1. Dot number comparison

In Exp. 1A, the mean percentage of errors was significantly
below 50% for the schooled group, t(14)¼�14.90, po .001, for the
unschooled-instructed group, t(14)¼�9.11, po .001 and for the
unschooled group, t(12)¼�5.37, po .001. In fact, all the 43
participants had an error rate lower than 50% (range 3–45%),
suggesting that none of them was responding randomly. Further,
the ANOVA revealed that the error rate diminished with increas-
ing ratio, demonstrating the signature of the approximate number
system, F(3, 120)¼78.48, po .001, Z2

p¼ .66; Linear trend: po .001.
Furthermore, the congruency between the numerical and non-
numerical cues influenced the capacity to compare sets of dots on
the basis of number. Indeed, congruent trials led to lower error
rates (8.7% errors) than incongruent trials (40.6%), F(1, 40)¼57.24,
po .001, Z2

p¼ .59. This effect increased as the ratio approached
one, i.e. it was larger for the most difficult comparisons, F(3,
120)¼14.66, po .001, Z2

p¼ .27.
Interestingly, the analysis revealed a main effect of Group,

F(2, 40)¼4.63, p¼ .016, Z2
p ¼ .19. Bonferroni post-hoc comparisons

indicated that participants from the unschooled group (M¼30.3%,
SD¼13.2, range¼8–45) were overall more error-prone than parti-
cipants from the schooled group (18.1%, SD¼8.3, range¼3–31;
p¼ .014). The error rate for the unschooled-instructed group
(25.5%, SD¼10.4, range¼11–41) did not significantly differ from
either of the unschooled or schooled groups (p¼ .74 and p¼ .20,
respectively). Here again, it is worth noting that the level of
performance was very heterogeneous among participants, especially
between participants from the unschooled group, as indexed by the
range of individual scores.



Fig. 2. Mean performance for each group and for each comparison task. Mean error rates (left panels) and mean response times (right panels) obtained by each group in

the (A) dot number comparison task and in the (B) Arabic number comparison task, as a function of condition and ratio.

Fig. 1. Examples of stimuli presented in the Quantity Comparison Task (Experiment 1). The upper panels illustrate the dot number comparison task (Exp. 1A); the lower

panels illustrate the Arabic number comparison task (Exp. 1B). Panels (A) and (B) correspond to congruent and incongruent trials, respectively. Panels (C) and

(D) correspond to unit–decade compatible and incompatible trials, respectively.
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Importantly, the effect of ratio was less marked for the unschooled
group than for the other two groups, as revealed by the significant
Ratio�Group interaction, F(6, 120)¼3.38, p¼ .004, Z2

p¼ .15. The error
rate for the largest, easiest, ratio (8:4) was substantially lower for the
schooled and unschooled-instructed groups (3.7% and 6.7% respec-
tively) while it remained quite high for the unschooled group (19.7%),
therefore leading to a smaller ratio effect for the latter. The Group
difference was also modulated by the congruency between the
numerical and non-numerical cues, F(2, 40)¼3.46, p¼ .041, Z2

p¼ .15.
A separate analysis for congruent and incongruent trials showed that
the three groups did not differ for the congruent trials (6.5%, 12.1%,
7.5% errors, respectively for the unschooled, unschooled-instructed,
and schooled groups, p¼ .277). By contrast, participants from the
unschooled group had a mean error rate (54.1%) larger than that of
the schooled group (28.8%, p¼ .005) and marginally larger than that
of the unschooled-instructed group (39.0%, p¼ .08) when the total
area occupied by the dots was incongruent with the number of dots
(Main effect of group, p¼ .02). However, participants from the
unschooled group did not uniquely base their responses on non-
numerical parameters such as area, since incongruent trials led to an
overall error rate much smaller than 100%, especially for the largest
numerical ratios. The triple interaction was not significant, p4.10.

Regarding RTs, as expected, the analysis revealed a significant
effect of ratio, F(3, 96)¼13.93, po .001, Z2

p¼ .30; Linear trend:
po .001. The effect of Condition was also significant, F(1,
32)¼13.03, p¼ .001, Z2

p¼ .29, with faster RTs for congruent trials
(1261 ms) than incongruent trials (1487 ms). Finally, the
unschooled group (M¼1665 ms, SD¼547, range¼731–2579)
was slower at comparing sets of dots than both the unschooled-
instructed (1116 ms, SD¼334, range¼767–1778) and schooled
groups (1183 ms, SD¼255, range¼560–1531; pso . 05), who did
not differ from each other (p4 .05), F(2, 32)¼9.10, p¼ .001, Z2

p

¼ .36. No other significant effect was found, all ps4 .10.
2.2.2. Arabic number comparison

In Exp. 1B, all analyses were based on data from 39 participants
because four participants from the unschooled group refused to
complete the Arabic number comparison task. In fact, these four
participants had huge difficulties to process Arabic numerals from
across the range used in this task, as revealed by the Arabic to Verbal

Transcoding subtest in which they reached very poor performance,
even for the numerals below 100 (see Table 1).

The mean percentage of errors was significantly lower
than 50% for the schooled group, t(14)¼�21.16, po .001, for the
unschooled-instructed group, t(14)¼�26.67, po .001 and for the
unschooled group, t(8)¼�5.54, p¼ .001. More precisely, all the 39
participants had an error rate below 50% (range 0–41%), showing
that they did not respond randomly. The ANOVA revealed that the
error rate diminished with increasing ratio, F(3, 108)¼10.58,
po .001, Z2

p¼ .23; Linear trend: po .001, and was lower for the
unit–decade compatible trials (7.7%) than for incompatible trials
(16.6%), F(1, 36)¼31.85, po .001, Z2

p¼ .47. The error rate varied with
Group, F(2, 36)¼12.49, po .001, Z2

p¼ .41. Bonferroni post-hoc com-
parisons indicated that the unschooled group (23.8%, SD¼14.2,
range¼2–41) had a higher error rate than both the unschooled-
instructed (7.5%, SD¼6.2, range¼0–22) and schooled groups (5.2%,
SD¼8.2, range¼0–33) when asked to compare two-digit Arabic
numbers (psr .001)3. The schooled and unschooled-instructed
groups did not differ from each other (p4 .05). Again, performance
was very heterogeneous among participants. Further, the
3 It is worth noting that since about one fourth of the participants from the

unschooled group refused to complete the Arabic number comparison task, the

group difference observed between the unschooled group and the other two

groups in this task might be even larger than depicted here.
discrepancy between the unschooled group and the two other
groups seemed to be slightly more pronounced for the smallest
ratios, as revealed by a significant Ratio�Group interaction, F(6,
108)¼2.21, p¼ .048, Z2

p¼ .11. The group difference was also much
larger for the incompatible trials (34.7%, 9.4%, 5.8% errors, respec-
tively for the unschooled, unschooled-instructed, and schooled
groups) than for the compatible trials (12.8%, 5.6%, 4.6% errors
respectively), F(2, 36)¼14.26, po .001, Z2

p¼ .44.
Regarding RTs, the analysis showed a significant effect of

Group, F(2, 36)¼24.66, po .001, Z2
p¼ .58. Participants from the

unschooled group (3066 ms, SD¼1158, range¼1583–4606) were
extremely slow to compare two-digit Arabic numbers. Bonferroni
post-hoc comparisons indicated that they were slower than both
the unschooled-instructed (1321 ms, SD¼664, range¼711–2996;
po .001) and schooled groups (966 ms, SD¼219, range¼644–
1377; po .001), who did not differ from each other (p4 .05). The
effect of Condition was marginally significant, F(1, 36)¼2.68,
p¼ .10, Z2

p¼ .07, with shorter reaction times for unit–decade
compatible trials (1738 ms) than for incompatible trials
(1899 ms). No other significant effect was found.

2.3. Discussion

Regarding the Arabic number comparison task (Exp. 1B), the
results showed that although adults who never received math
education are not completely unable to access numerical infor-
mation from Arabic numerals, their mastery of the place-value
structure of the Arabic number system is generally limited.
Indeed, four of them refused to complete the task and those
who participated committed a lot of errors in addition to being
extremely slow. Moreover, the fact that the unschooled group
was less prone than the others to disregard the irrelevant unit-
value in the incompatible trials is an indication that the integra-
tion of the magnitude of decades and units into the place-value
structure of the Arabic number system constitutes a very
demanding process for the majority of the participants from this
group. Further, the observation that the unschooled participants
had higher error rates and longer processing times for the
compatible trials as well suggests either their access to number
magnitude from Arabic number symbols is less efficient or that
their capacities to process number magnitude itself are weaker
than those of participants who received math education.

Results from Exp. 1A, which did not involve any number symbols,
seem coherent with the latter view. Indeed, the unschooled group
performed more poorly and exhibited an effect of numerical ratio
different from that of both the other groups in the nonsymbolic
number comparison task, suggesting that the core number proces-
sing skills of adults who did not receive education in math are less
precise than those of adults who benefited from it. This finding might
be taken to provide further support to the hypothesis that mathe-
matical learning constitutes one factor influencing the refinement of
the approximate number processing skills during the life course.
However, the observation that the unschooled group produced a
larger number of errors only when information on numerosity was
incompatible with information on the non-numerical area dimension
led us to consider an alternative (though not mutually exclusive)
interpretation. It might be the case that uninstructed participants are
less able than instructed adults to focus on the numerical properties
of the figures and to disengage their attention from the continuous
non-numerical variables. This specific difficulty could arise from a
more general trend for uninstructed participants to favor holistic
rather analytic processing, which prevents focusing on specific
dimensions only [5,46]. Experiment 2 was run to investigate further
the hypothesis of a specific difference in numerical magnitude
handling, while at the same time eliminating the effect of a general
cognitive trend towards holistic processing.



Table 2
Examples of quantities displayed in the forced-choice mapping task for distant

and close distractors trials.

Target Choices-

Quantities

Distant distractors trial

Small value 48 48 77 96

Mid-range value 49 25 49 98

Large value 46 23 29 46

Close distractors trial

Small value 47 47 54 63

Mid-range value 48 42 48 55

Large value 49 37 43 49
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3. Experiment 2

The Forced-Choice Mapping Task was designed to assess
whether the poorer performance observed for the participants
from the unschooled group in Exp. 1 was solely due to an inability
to focus their attention on the numerical properties of the stimuli
or whether it was also related to a more specific difference in the
acuity of the approximate number system. To address this aim,
the task was designed so that the continuous non-numerical
variables could not provide any clue about the correct response.

3.1. Method

3.1.1. Participants

The sample of participants was the same as in Experiment 1.
3.1.2. Materials and procedure

In Exp. 2 (Forced-Choice Mapping task) participants had to match
quantities numerically. A fixation point was displayed during
2000 ms in the center of the screen, followed by the presentation
of a target-quantity during 1000 ms. After a 400 ms blank-interval,
three choice-quantities (a quantity numerically matching the target
and two distractors) were horizontally displayed side by side on the
screen, numerically increasing from left to right. Among the three
choice-quantities that remained visible until response, participants
had to identify the panel that numerically matched the target-
quantity. Participants indicated their response by pointing on the
screen to the quantity they chose. The experimenter then pressed
the corresponding key on the response box.

The target-quantity ranged from 4 to 49; the distractors from
2 to 98. The correct response was equally distributed among the
three positions: one third corresponded to the smallest value
(located on the extreme-left of the screen), one third to the mid-
range value (on the center), and one-third to the largest value (on
the extreme-right). The two distractors were quantities corre-
sponding to 8:4, 8:5, 8:6 or 8:7 (or inversely 4:8, 5:8, 6:8 and 7:8)
of the target-quantity. The trial difficulty was manipulated so that
the target-quantity and the distractors were either numerically
close or distant. When the target-quantity was a mid-range value,
the easy trials included numerically far distractors (ratio of 8:4 or
of 8:5), whereas the difficult trials involved numerically close
distractors (ratio of 8:7 or of 8:6). When the target-quantity was
either the smallest or the largest value, the easy trials implied
systematically one very distant distractor (ratio of 8:4), and the
difficult trials implied one very close distractor (ratio of 8:7),
whereas the other distractor had an intermediate ratio (see
Table 2, for some examples). Fifteen practice trials were first
administered (with feed-back) followed by 96 experimental trials.

Several variants of the Forced-Choice Mapping task were used,
with either nonsymbolic stimuli only (sets of dots) or a combina-
tion of nonsymbolic (sets of dots) and symbolic stimuli (numbers
visually presented in an Arabic format and simultaneously read
aloud by the experimenter). Each variant of the Forced-Choice
Mapping task involved the same numerosities. In the NS-to-NS

format, the target-quantity and the choice-quantities were all
nonsymbolic (NS mapping condition). To prevent responses based
on non-numerical continuous variables rather than on numer-
osity, the set of dots presented as target-quantity had a total
occupied area three times smaller than the choice-quantities and
the total occupied area was the same for the three choice-
quantities. Since the total area of the choice-quantities did not
vary with the number of dots, area was consequently not provid-
ing any clue about the correct response. By contrast, the indivi-
dual dot size, which was held constant within each set, varied
with number. However, it was not informative of the correct
response for two reasons. First, the individual dot size of the
correct choice was three times larger than that of the target-
quantity. Second, the correct response could not be derived on the
basis of the individual dot size of the choice-quantities because
the correct response was not systematically associated to a
specific individual dot size but was rather equally distributed
among the three positions, therefore corresponding to the numer-
osity with either the smallest, or intermediate, or largest dots,
each in one-third of the trials respectively. In the NS-to-S format,
the target-quantity was nonsymbolic and the choice-quantities
were symbolic. In the S-to-NS format, the target-quantity was
symbolic and the choice-quantities were nonsymbolic. Among the
three choice-quantities, the total occupied area was the same for
each set of dots. Dot size was held constant within a set. The two
variants of the Forced-Choice Mapping task that involved a
mapping between nonsymbolic and symbolic stimuli were put
together for the analyses (NS/S mapping condition). Examples of
stimuli used in Experiment 2 are depicted in Fig. 3.

3.2. Results and discussion

Two participants from the unschooled group were unable to
perform the Forced-Choice Mapping Task and were excluded from
the analyses. Two additional participants from this group obtained a
mean percentage of correct responses (32%) that was not above
chance (33%). However, these two participants were kept in the
analysis because they performed above chance in at least one of the
conditions of the task, suggesting that they had understood the
instructions correctly. All analyses were thus based on data from 41
participants. Regarding the NS/S condition, the results showed that
the mean percentage of correct responses was above chance
whatever the group and whatever the distance between the target
and the distractors (see Table 3). For the NS condition, the mean
percentage of correct responses was above chance for each group of
participants, except for the most difficult trials (close distractors) for
which the unschooled group reached very poor performance.

A 2�2�3 mixed ANOVA was run on the mean percentage of
correct responses with Condition (NS Mapping vs. NS/S Mapping)
and Distance (close vs. distant distractors) as within-subject
factors, and Group as a between-subject factor. Results showed
significant differences between groups, F(2, 38)¼13.84, po .001,
Z2

p¼ .42. Bonferroni comparisons indicated that the unschooled
group obtained a lower score (39.1% correct responses) than both
the unschooled-instructed and schooled groups (47.3% and 52.6%
respectively; pso .05), who did not differ from each other
(p4 .05). The NS mapping led to lower performance (42.9%)
than the NS/S mapping (49.8%), F(1, 38)¼54.56, po .001,
Z2

p¼ .59. The Group by Format interaction was not significant,
indicating that the unschooled group had poorer performance
than the two other groups both in the NS/S condition as well as in
the NS condition, F(1, 38)¼2.07, p¼ .141, Z2

p¼ .09. The fact that
the participants from the unschooled group displayed poorer



Fig. 3. Illustration of the Forced-Choice Mapping task procedure and stimuli. From left to right: NS-to-NS format; NS-to-S format and S-to-NS format. In the examples

provided here, the correct response is located on the left, the middle and the right position respectively. Notice that the total occupied areas of the choice-quantities in the

NS–NS format are equated and three times larger than that of the target-quantity.

Table 3
Mean percentage of correct responses, and analysis of the differences between chance level performance and percentage of correct responses, as function of group,

condition and distance.

Task Mean (SD) df t (Test value¼33)

Schooled group NS mapping

Distant distractor trials 54.2 (12.2) 14 6.71nn

Close distractor trials 41.4 (10.7) 14 3.04nn

NS/S mapping

Distant distractor trials 64.8 (7.9) 14 15.6nn

Close distractor trials 49.9 (5.1) 14 12.9nn

Unschooled-instructed group NS mapping

Distant distractor trials 47.1 (10.6) 14 5.1nn

Close distractor trials 41.9 (4.8) 14 7.2nn

NS/S mapping

Distant distractor trials 56.5 (9.3) 14 9.8nn

Close distractor trials 43.8 (6.3) 14 6.7nn

Unschooled group NS mapping

Distant distractor trials 38.5 (8.3) 10 2.2n

Close distractor trials 34.1 (7.8) 10 .5

NS/S mapping

Distant distractor trials 44.6 (8.5) 10 4.5nn

Close distractor trials 39.2 (6.7) 10 3.1nn

n po .05.
nn po .01.
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performance than the two other groups in the purely nonsym-
bolic variant of the task suggests that they have less developed
approximate number processing skills. Finally, we observed a
significant effect of Distance, F(1, 38)¼78.95, po .001, Z2

p¼ .68
and a significant Group by Distance interaction, F(2, 38)¼6.03,
p¼ .005, Z2

p¼ .24 indicating that the gain provided by the easier
trials that involve numerically far distractors was smaller for the
unschooled group than for the unschooled-instructed group, and
smaller for the unschooled-instructed group than for the schooled
group. This finding suggests that the subjective overlap between
numerically adjacent quantities is greater for the participants
from the unschooled group, providing further support to the
conclusion that their approximate number processing skills are
less precise than those of participants who received education in
mathematics. No other significant effect was found, all psZ .10.
4. General discussion

A recent study in the domain of language demonstrated that
human brain circuits show considerable plasticity in response to
reading acquisition, and in particular that literacy induces functional
changes in the cortical networks involved in phylogenetically ancient
cognitive skills, such as speech and visual object recognition [9].
Somewhat similarly, the current findings show that the acquisition
of culturally determined skills is also capable of modifying core
cognitive competences in the domain of numeracy. In the current
study we compared several groups of adults who live in the same
Western cultural environment but who differ dramatically in the
type and level of math education they had received. The present data
provide the first clear evidence that large number magnitude
processing skills are affected by the experience afforded by the
education in mathematics. Western adults who had received no
formal instruction in mathematics displayed longer response times,
higher error rates, and a smaller numerical ratio effect on large
nonsymbolic number comparison than Western adults who had
acquired exact number skills through math education, particularly
when non-numerical cues were incongruent with numerosity. More-
over, the forced-choice mapping task confirmed the existence of
group differences in the ability to approximately process large
number magnitude, by showing that adults in the unschooled group
were poorer at discriminating a target value from numerically
distant quantities, even when nonsymbolic stimuli only were pre-
sented. The findings suggest that the acquisition of exact numerical
knowledge through mathematical education contributes to enhance
the precision of the approximate number system, leading adults who
have benefitted from instruction to develop more accurate approx-
imate number processing skills. The observation that the schooled



J. Nys et al. / Trends in Neuroscience and Education 2 (2013) 13–22 21
and unschooled-instructed groups reached similar performance
across the two tasks used in the current study further suggests that
such a refinement in numerical perception may occur late in life, and
also highlights the importance of mathematical education rather
than schooling per se. In other words, a factor that seems determi-
nant for the enhancement of the approximate number system is
receiving instruction in math, whatever the system of education, its
organization, curriculum or methodology.

Several factors can be invoked to explain this refinement. A first
possibility is that math education modifies the importance that
individuals attribute to numerical information and a second one is
that certain numerical activities on which math education focuses
might directly affect the efficiency of the approximate number
system. Regarding the first hypothesis, math education might
influence number processing by enhancing the salience of numerical
properties over other aspects of objects or events. Past studies have
demonstrated that, with age, it becomes increasingly difficult to
ignore number, even when the numerical features of the stimuli are
irrelevant to the task [37,44]. One little noticed consequence of
mathematical instruction may be to induce individuals to gradually
attribute more and more weight to numerical information over other
features and dimensions of their environment. The observation that
numerosity did not preempt non-numerical dimensions for the
participants from the unschooled group in the incongruent compar-
ison trials and the fact that their level of performance matches that of
5 and 6-year-old preschoolers when comparable ratios are consid-
ered in similar experimental situations [2,44], are coherent with the
view that education in mathematics might induce the predominance
of number over other perceptual features.

Regarding the hypothesis of a direct influence of math education
on the approximate number system, the formal utilization of Arabic
numerals might fundamentally transform number processing. Like
the verbal symbols, the Arabic numerals allow one to use numbers
in reference to their discrete, exact value, and to extend their range
infinitely. Beyond that, because the Arabic numeral system is based
on few symbols and produces compact combinatorial expressions
even for large numbers, the apprehension and manipulation of
numbers is rendered easier. Furthermore, the place-value coding of
the Arabic numeral system considerably simplifies the learning of
exact arithmetic. Overall, mainly because of its notational economy
and compactness, it is really with the introduction of the Arabic
numeral system that an intensive use of large and not only small
numbers can take place. Such a strengthened utilization of numbers
could further precise the underlying representations that children
form about numbers. Interestingly, the notion that the use of
numerals might refine the precision with which mental representa-
tions of numbers are accessed has received some support in recent
neuroimagery and neural simulation studies [42,47]. Another way in
which math education might impact on number processing is
through the introduction of exact arithmetic. Arithmetic is a power-
ful drive to create relations across numbers and to manipulate them
extensively. Through arithmetic learning, people can appreciate the
quantitative effects of number operations and how numbers inter-
act. Also through repeated practice, the constitutive components of
a number can be better apprehended. In that way, operating on
numbers through arithmetic constitutes an additional opportunity
to better understand what numbers stand for and to better
apprehend the relations between numerals and numerosities,
thereby increasing the distinctiveness of the underlying number
magnitude representations.

More generally, one critical element provided by math education
is experience with numbers. During math lessons, students are
engaged in the exact manipulation of numbers, so that they become
more familiar with the range of numbers to which they are exposed.
During kindergarten and the first grades of elementary school,
teachers traditionally train children to learn basic arithmetical
concepts such as exact addition and exact subtraction by using
single-digit numbers. It is only in older children, once these funda-
mental concepts are acquired, that teachers begin to introduce larger
numbers in exact calculation, with the use of multi-digits numerals.
Therefore, one inevitable correlate of the level of math education is
the degree of familiarity with numbers, so that beginners are familiar
with small numbers only, while those who are more advanced are
acquainted with small as well as larger numbers. As a consequence,
the experience and familiarity with number might also be a key
factor responsible for the refinement of the number magnitude skills.
This hypothesis could constitute an additional explanation of the fact
that the unschooled-instructed group did usually not differ from the
schooled group. Indeed, due to their professional occupation, most of
the participants from the unschooled-instructed group were used to
perform arithmetic operations on large numbers in their everyday
life, for instance through practicing money exchange. Variations in
familiarity and daily use of large numbers could also account for the
large heterogeneity observed in the magnitude tasks for the
unschooled group, with a few participants from this group reaching
performance similar to that of schooled participants. Some support
for this view can be seen in the relatively high scores obtained by
those unschooled participants in the numerical screening test, in
particular with regards to the use of numbers in the everyday life.
Interestingly, although the number of unschooled participants is very
limited, there was a significant correlation between the use of
numbers in the everyday life and the error rate in the nonsymbolic
comparison task (r (13)¼� .57, p¼ .04). These observations are thus
compatible with the idea that the experience with numbers, in
addition to years of education, may be one important factor
determining performance in the magnitude-processing tasks used
in the present study.

Importantly, this proposal helps reconcile the current data with
those reported very recently by Zebian and Ansari [53], who showed,
contrary to us, that minimally instructed adults did not differ
significantly from highly instructed adults in comparing nonsymbolic
quantities. However, in their study, the authors presented small
quantities ranging from one to nine only, i.e. very basic numerosities
that are encountered daily (e.g., the 10 fingers, the 12 hours, the
limited number of family members) and with which even adults who
did not benefit from math education are most likely very familiar. The
observation that the nonsymbolic approximate number skills of
minimally instructed adults are not statistically different from those
of highly instructed adults when very small numbers are involved
[53] whereas they are clearly less precise for large numbers gives
further credence to the hypothesis that experience with numbers
plays an important role in the development and refinement of
number magnitude processing mechanisms.

In sum, the current results challenge the dominant interpretation
of the developmental studies showing a specific association between
approximate and exact number skills [14,20–22,25,28,31,32,41]. The
first and dominant explanation is that the approximate number
system serves as a foundation for the acquisition of exact number
skills, such as counting and arithmetical skills, and that inter-
individual variations in the efficiency of the approximate number
system causally determines exact number abilities [6,7,45,28]. A
second interpretation of the association is that the reverse might
occur, i.e., that the acquisition of exact number competences through
math education and prolonged exposure to numerical notations
modifies or refines the approximate number system. For instance,
Halberda and colleagues [20] found a correlation between approx-
imate number skills assessed at the age of 14 and past mathematical
achievement scores, a result which is compatible with both inter-
pretations. The present data provide the first clear evidence that
the second, less dominant, view constitutes a viable explanation
(see also [33], in revision, for converging data in kindergarten
children). Of course, the current results also leave the way open to
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a third interpretation according to which both causal directions
would be at play, with the existence of reciprocal influences during
development between the exact and approximate number skills. In
accordance with such an account, the observation of dyscalculic
children who experience difficulty in exact calculation as well as in
approximate number tasks (e.g., [32,41]) might reflect a deficit of the
core numerical magnitude competence, a specific difficulty in
grasping numerical symbol systems, or possibly reciprocal influences
between both components (see also [34]). In conclusion, the current
findings underline the powerful influence of enculturation on
biologically determined cognitive skills in the domain of numeracy.
They clearly indicate that the possibility of reciprocal influences
between exact and approximate number systems should be con-
sidered more systematically in future studies of numerical develop-
ment and acquisition disorders.
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[16] Göbel SM, Walsh V, Rushworth MFS. The mental number line and the human
angular gyrus. NeuroImage 2001;14(6):1278–89.

[17] Gordon P. Numerical cognition without words: evidence from Amazonia.
Science 2004;306(5695):496–9.

[18] Guerreiro M, Silva AP, Botelho MA, Leit~ao O, Castro-Caldas A, Garcia C.
Adaptac- ~ao �a populac- ~ao portuguesa da traduc- ~ao do Mini Mental State
Examination (MMSE). Revista Portuguesa de Neurologia 1994;1:9–10.
[19] Halberda J, Feigenson L. Developmental change in the acuity of the number
sense: the approximate number system in 3-, 4-, 5-, and 6-year-olds and
adults. Developmental Psychology 2008;44(5):1457–65.

[20] Halberda J, Mazzocco MMM, Feigenson L. Individual differences in non-verbal
number acuity correlate with maths achievement. Nature 2008;455:665–8.

[21] Holloway ID, Ansari D. Mapping numerical magnitudes onto symbols: the
numerical distance effect and individual differences in children’s mathematics
achievement. Journal of Experimental Child Psychology 2009;103(1):17–29.

[22] Inglis M, Attridge N, Batchelor S, Gilmore C. Non-verbal number acuity
correlates with symbolic mathematics achievement: but only in children.
Psychonomic Bulletin & Review 2011;18(6):1222–9.

[23] Izard V, Sann C, Spelke ES, Streri A. Newborn infants perceive abstract numbers.
Proceedings of the National Academy of Sciences 2009;106(25):10382–5.

[24] Li G, Cheung R, Gao J, Lee T, Tan L, Fox P, Jack C, et al. Cognitive processing in
Chinese literate and illiterate subjects: an fMRI study. Human Brain Mapping
2006;27(2):144–52.

[25] Libertus ME, Feigenson L, Halberda J. Preschool acuity of the approximate
number system correlates with school math ability. Developmental Science
2011;14(6):1292–300.

[26] Lipton JS, Spelke ES. Origins of number sense. Large-number discrimination
in human infants. Psychological Science 2003;14(5):396–401.

[27] Lobrot M. Batterie d’e!preuves pour mesurer la lecture et l’orthographe:
Manuel. Paris, France: Editions et Application Psychologiques; 1980.

[28] Mazzocco MMM, Feigenson L, Halberda J. Preschoolers’ precision of the
approximate number system predicts later school mathematics performance.
PLoS ONE 2011;6(9):e23749.

[29] Morais J, Bertelson P, Cary L, Alegria J. Literacy training and speech
segmentation. Cognition 1986;24(1–2):45–64.

[30] Morais J, Cary L, Alegria J, Bertelson P. Does awareness of speech as a
sequence of phones arise spontaneously? Cognition 1979;7(4):323–31.

[31] Mundy E, Gilmore CK. Children’s mapping between symbolic and nonsym-
bolic representations of number. Journal of Experimental Child Psychology
2009;103(4):490–502.
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