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ScienceDirect
Learning new concepts in mathematics and science often

involves inhibiting prior beliefs or direct perceptual information.

Recent neuroimaging work suggests that experts simply get

better at inhibiting these pre-potent responses rather than

replacing prior concepts with the newer concepts. A review of

both behavioral and neuroimaging evidence with children

suggests that improving inhibitory control is a key factor in

learning new scientific and mathematical facts. This finding has

implications for how these subjects are taught in the classroom

and provides corroborating evidence for practices already in

place.
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Introduction
What sets us aside from most other species is our ability to

develop abstract and causally-based concepts [1]. These

concepts go beyond the information immediately avail-

able through direct perception and encode an under-

standing of how elements in the world relate to one

another in general. Acquiring such abstract concepts

underpins school-based learning in both mathematics

[2] and science [3,4]. However, any pupil aiming to

acquire ‘new’ concepts in science and mathematics needs

to overcome the strong pull of existing beliefs that have

served them so well until then. In science education, this

so-called ‘conceptual change’ is a formidable obstacle in

acquiring knowledge that goes beyond popular belief or

perception [5�]. Similarly, in mathematics, the child

needs to go beyond the perceptually obvious solutions

to understand and apply formal logical solutions to a

problem [6–8].
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Recent work in scientific reasoning has suggested that the

inhibition of pre-exiting beliefs through the activation of

the dorsal lateral prefrontal cortex (DLPFC) and the

anterior cingulate cortex (ACC) is an integral part of

the successful evaluation of counterintuitive science

and mathematics evidence [9,10�]. Thus, in this article,

we will review the role that concepts play in mathematics

and science learning and explore how the brain controls

the many competing beliefs that we hold in mind at any

one time, in a way that allows us to take on new ideas

(Figure 1).

Conceptual change in science and
mathematics
Scientific reasoning involves the evaluation of newly

gathered evidence and the integration of this evidence

into one’s existing concepts, theories or models of the

physical and biological world. Contrary evidence may

require the revision of existing theories [4,11,12], or the

development of an entirely new theory, a process called

conceptual change [5�,13]. A key element of learning any

new concepts is the need to overcome strongly held

prior beliefs about a domain before new knowledge can

be effectively assimilated [14,15]. Thus, a major chal-

lenge in mathematics and science education is the need

for children to inhibit pre-existing beliefs or superficial

perception in order to engage in acquiring and applying

new and counterintuitive knowledge [13,16�,17,18,19].

Because of the importance of this process in scientific

reasoning, many researchers have focused on investi-

gating the naı̈ve concepts that children and adults hold

about phenomena in various scientific domains. In

this approach, the goal is often to describe and uncover

the mechanisms underlying conceptual change as a

function of new learning [13,20,21] in, for example,

domains such as biology [22], physics [23], or evolution

[24].

But what happens as we become experts? Are old con-

cepts overwritten, simply forgotten, or do they continue

to impact on our thinking. Brain imaging data from adults

(typically university students) are especially informative

here. In a range of tasks it has been shown that the

interplay between the anterior cingulate cortex (ACC),

which supports conflict detection, and multiple regions of

the prefrontal cortex supporting attention, inhibitory

control, working memory and the integration of informa-

tion, plays a critical role in the detection of, and subse-

quent modification of beliefs and scientific understanding

in response to conflict between new and prior knowledge

[10�,25��,26]. These results suggest that an important part
www.sciencedirect.com
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Learning counterintuitive concepts in mathematics and sciences

involve increasingly proficient levels of selective inhibition of prior

beliefs, and information acquired through direct experience and direct

perception with age and experience. Acronymes: ACC: anterior

cingulate cortex; DLPFC: dorsolateral prefrontal cortex; VLPFC:

ventrolateral prefrontal cortex.
of the neural basis of scientific and mathematical learning

lies in the detection of an anomaly, the inhibition of prior

beliefs, and the integration of new information and con-

cepts into an updated scientific understanding.

Conceptual knowledge in the brain
Brain imaging studies have made a real contribution to

our understanding of how conceptual knowledge is repre-

sented [27]. Two general distinctions are identified: (1) a

spatial one, whereby ‘perceptual’ processing is associated

with more posterior activity, over the areas involved in the

first steps of visual analysis, while more abstract proces-

sing is associated with frontal and temporal activity, and

(2) a temporal one, whereby ‘perceptual’ processing pre-

cedes more abstract ‘conceptual’ analysis.

That said, ‘conceptual’ knowledge is located in broad

distributed networks [28] involving many parts of the

brain, including: (1) overlapping but partly distinct neural

systems for processing concrete and abstract concepts,

with greater involvement of bilateral association areas

during concrete word processing, and processing of ab-

stract concepts almost exclusively by the left hemisphere

[29], (2) amodal representations that transcend particular

input modalities [30,31], and (3) embodied knowledge

which is embedded within specific sensori-motor systems

[32]. Access to this conceptual knowledge therefore

requires executive control to leverage those parts of

the network that are helpful for the current task and

suppress the rest [33–35].

Close collaboration between the various knowledge re-

presentation networks and a cognitive control network is
www.sciencedirect.com 
therefore essential for the effective management of exist-

ing knowledge and the acquisition of new knowledge

[36]. Given the complex interrelated networks involved

in representing conceptual knowledge, a key challenge is

to overcome interference and inhibit irrelevant informa-

tion while activating the relevant information. Standard

information processing approaches to cognition (that ab-

stract away from neural processes) represent processes as

encapsulated modules (e.g., attention module, working

memory module, among others). However, the control of

knowledge within neural networks is embedded within

particular domains of knowledge [33,37]. This suggests

that training executive control skills (such as general

working memory capacity or inhibitory controls) without

embedding the training within a specific knowledge

domains may not have as much impact on the control

of knowledge as training within a target domain. Indeed, a

recent review of the effectiveness of executive function-

ing training [38] finds that there is little evidence of

transfer from training on abstract executive function tasks

to academic skills, although embedding such activities

within the classroom appears to be much more effective

[39].

Inhibition and the control of conceptual
knowledge
The development of inhibition and the control of inter-

ference has long been established as a central limiting

factor in cognitive development [7,40]. Children have the

capacity to make inhibitory responses from infancy, but

only gradually get better at using this ability [41�]. During

interference control, children show more diffuse frontal

cortex activations and a greater recruitment of posterior

brain regions; adults by contrast show more focal activa-

tion in the DLPFC, ACC and inferior frontal gyrus

[42,43]. Similarly, neuroimaging evidence with children

shows a shift from posterior perceptual processing regions

to fronto-parietal activations correlating with age and

improved performance on logic and mathematical pro-

blems [44,45]. This has been interpreted as showing that

children need to inhibit initial perceptually bound beliefs

before being able to successfully apply the more abstract

and (frontally dependent) reasoning skills required in

math and logic. Convincing evidence of this shift was

presented in a recent meta-analysis of functional mag-

netic resonance imaging (fMRI) data obtained over a

decade (1999–2008) on more than 800 children and ado-

lescents engaged in numerical tasks. This analysis

revealed that, unlike adults, children primarily engage

the frontal cortex when solving numerical tasks. This is

consistent with the argument that, with increasing age,

there is a shift from a reliance on the frontal cortex to

reliance on the parietal cortex in mathematical reasoning

tasks [46�], perhaps due to reduced cognitive load as

children gradually acquire expertise in mathematics.

Though it should be noted that this conclusion relies

on the reverse inference that because frontal regions are
Current Opinion in Behavioral Sciences 2016, 10:114–118
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more active, greater inhibitory control is being exerted.

Given the prolonged development of the frontal lobes

[43] it is not possible to be entirely sure that functions

observed in the developing brain are identical to those

observed in the mature adult brain, even if the activation

patterns are similar.

A second strand of evidence comes from Evans [47] who

posited that there are two competing cognitive systems

underlying reasoning: the heuristic system, which is evo-

lutionarily old, fast operating, automatic and parallel; and

the analytic system, which is slow operating, rule based,

sequential in nature, and although limited by working

memory capacity, underlies abstract logical reasoning and

hypothetical thinking. A defining property of the dual

process model of reasoning is that the analytic system is

able to inhibit and override the heuristic system so that

individuals can successfully carry out logical tasks [48–
50]. Neuroimaging work on logical and scientific reason-

ing in adults has consistently shown that the inhibition of

pre-existing beliefs, misleading perceptual-biases, and

intuitive heuristics is associated with the activation of

the anterior cingulate cortex (ACC) and the prefrontal

cortex, notably the inferior frontal cortex (IFG) and

dorsolateral prefrontal cortex (DLPFC) [10�,11,25��,
26,48]. Critically, Houdé et al. [45] provided neuroimag-

ing evidence of a switch, after a brief period of training in

logical reasoning, from the heuristic system to the analytic

system in adults.

To explore this idea further, several labs [25��,26] have

used an fMRI protocol to obtain functional brain images

of novices and experts while performing a cognitive task

in mechanics, a scientific discipline for which misconcep-

tions are known to be frequent and persistent. They

found that experts, significantly more than novices, acti-

vate brain areas associated with inhibition; specifically,

the right ventrolateral prefrontal cortex and the left

dorsolateral prefrontal cortex. This suggested that the

experts’ misconceptions in mechanics had not been erad-

icated or transformed during learning but rather that they

had remained encoded in their brains and were then

inhibited to provide a correct answer.

Evidence from the classroom
Is there any behavioral evidence (relevant to educational

practitioners) of the importance of inhibitory skills in

mathematics  and science learning? Gilmore, et al. [51�]
have recently explored how inhibition skills are related to

overall mathematical achievement as well as factual,

procedural and conceptual knowledge in 209 participants

aged 11–12 years, 13–14 years, and adults. These authors

found that general mathematics achievement was more

strongly related to inhibition measured in numerical

compared with non-numerical contexts. Inhibition skills

were related to conceptual knowledge in older partici-

pants, but procedural skills in younger participants.
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There is also some evidence [52] of a contribution of

hippocampal–prefrontal circuits (specifically DLPFC

and VLPFC) related to the early development of retriev-

al fluency in arithmetic problem solving. Finally, recent

research suggests that executive function skills, such as

suppressing distracting information and unwanted

responses (inhibition) play a critical role in the develop-

ment of mathematics proficiency [53,54].

The continued development of prefrontal lobes during

early adolescence [41�,43] would imply an improvement

with age in students’ abilities to inhibit task-irrelevant

information and coordinate task-relevant information,

thereby enhancing their scientific reasoning abilities as

well as their ability to reject scientific misconceptions and

accept scientific conceptions, well into adolescence. To

test this hypothesis, two hundred and ten 13–16 year old

Korean secondary school pupils were tested with four

tasks known to load on pro-frontal activity, a test of

scientific reasoning ability, and a test of air pressure

concepts derived from kinetic-molecular theory [55].

The measures of prefrontal lobe activity correlated highly

with scientific reasoning ability. In turn, prefrontal lobe

activity and scientific reasoning ability predicted concept

gains and posttest performance. A subsequent principal

components analysis showed that the study variables had

two main components, which were interpreted as an

inhibiting and a representing component. The authors

interpreted this as evidence for both the inhibition of

task-irrelevant information (i.e., the rejection of intuitive-

ly derived misconceptions) and the representation of

task-relevant information (i.e., complex hypothetico-de-

ductive arguments and counterintuitive scientific concep-

tions about non-observable entities).

Conclusion
Imaging and behavioral methods from the developmental

cognitive neurosciences have enabled us to make great

strides in understanding what underlies the complex

neural and cognitive processes involved in mathematical

and scientific concept learning. In turn, this work should

suggest classroom-based interventions that will improve

both science and mathematics educational outcomes [53].

A few interventions have begun to implement cognitive

control training within the classroom environment or

within mathematics and science teaching [16�,56–58].

Results show long-term effects and more generalizable

benefits when the training is embedded within the cur-

riculum than when it is not [16�,39].

Finally, it is reassuring to note that the recent emphasis

on the importance of inhibitory control in learning

science and mathematics, which emerges from the

cognitive neuroscience research, is entirely consistent

with older practice-based recommendations to encour-

age students to take a moment of ‘waiting time’ before

responding during science lessons [59]. By combining
www.sciencedirect.com
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these practice-based discoveries with the emerging

neural-based  evidence, we can be increasingly confi-

dent of our success in improving conceptual learning in

mathematics  and science education. While there is

already a sense among teachers that inhibitory control

is a foundational skill in mathematics learning [60],

feeding back the cognitive neuroscience evidence

can only strengthen this conviction and further improve

practice.
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